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Abstract

This paper proposes a new technique namel-Bayesian estimation, which is a new modification to
E-Bayesian method of estimation. The suggested approacld lbaseeplacing the quasi-likelihogd
function instead of the likelihood function in the E-Bayesiachhique. This study is concerned wjth

evaluating the performance of the QE-Bayesian methoduvette original E-Bayesian approach|in

estimating the scale parameter of the Frechet distribuibe QE-Bayes and E-Bayes estimates|are
obtained under symmetric loss function [squared error IdSER$ and three different asymmetric logs
functions [entropy loss function (ELF), weighted balanced fonction (WBLF) and minimum expected
loss function (MELF)]. The properties of the QE-Bayeséml E-Bayesian estimates are also studied.
Comparisons among all estimators are performed in tefrasolute bias(ABias) and mean square efror
(MSE) via Monte Carlo simulation. Numerical results showat tthe QE-Bayes estimates are mpre
efficient as compared with the E-Bayes estimates.

Keywords: E-Bayesian estimates; Frechet distribution; lasstfons; Monte Carlo simulation; QE-Bayes
estimates.
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1 Introduction

The Frechet distribution has many applications in modeliigeme events such as, wind speeds, stock
exchange and flood, etc. It was first introduced by N&uFrechet [1]. Several authors studied the Frechet
distribution; for examples, Mubarak [2] obtained the maxmmiikelihood and least squares estimates for
Frechet distribution based on progressive type-1l censofihbas and Yincai [3] compared the maximum
likelihood, probability weighted moments and Bayes estimdtesthe scale parameter of Frechet
distribution in complete samples. Nasir and Aslam [4] estih the shape parameter of Frechet distribution
via Bayesian scheme based on different prior distobudind various loss functions. The probability density
function (pdf) of the Frechet distribution is:

1y _[g]"
f(x;a,ﬁ):aﬁ"( ] e\ x>0,a,8>0, (1)

X
Where $ and a are the scale and shape parameters respectively.

The quasi-likelihood function was proposed by Wedderbumafb]a new extension of the maximum
likelihood estimation. This method requires a predeterminedngstion about mean and variance of the

underlying distribution. Given an observatianwith mean// and variance/ (), the quasi-likelihood
function can be defined as follows:

0Q(X;4) _ X—H @
ou V (4)
equivalent by
N[ XU :
Q(x; 1) —LV—(#) du+ function of X ?3)

Where 4 =E(X), V (1) =V (x) . The variance assumption is generalized/ {&) equals¢/V (), where
the variance functiol (.) is assumed to be known and the paramétemay be known or unknown. The

guasi-Bayesian estimation approach uses the napainential of quasi-likelihood function insteafdthe
ordinary likelihood function.

The E-Bayesian is a new criteria of estimation thas first introduced by Han [6]. This method cstssiof
obtaining the expectation of Bayes estimates wapect to the distributions of hyper parameterany
authors applied the E-Bayes technique such as[Hastimated the reliability parameter of the exputial
distribution by using the E-Bayes and hierarchiBalyes methods based on type-l censored and by
considering the quadratic loss function. Yin and [8] applied the E-Bayesian and hierarchical Bayes
estimation techniques to estimate the unknown bititia parameter of geometric distribution based on
scaled squared loss function in complete samples.eiVal. [9] obtained the minimum risk equivariamd
E-Bayes estimates for the Burr-XII distribution eneéntropy loss function in complete samples. Jalaeel
Okasha [10] estimated the parameter and reliabilibction of Burr-XIl model via Bayes and E-Bayes
techniques based on squared error and LINEX lasstibns on type-Il censoring. Cai et al. [11] ustesl E-
Bayesian criteria for forecasting of security intwesnt. Okasha [12] obtained the maximum likelihood,
Bayesian and E-Bayesian estimates for the parametibility and hazard functions correspondinghe
Weibull distribution based on type-Il censored daAzimi et al. [13] derived the Bayes and E-Bayes
estimates for parameter and reliability function tbe generalized half Logistic model based on
progressively type-1l censoring and by using symioetind asymmetric loss functions. Javadkani etldl]
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constructed the Bayes, empirical Bayes and E-Bsglesmes for estimating shape parameter and lijiabi
function of the two parameter bathtub-shaped fifetdistribution under progressively first-failureasoring
and by using the minimum expected and LINEX logscfions. Liu et al. [15] obtained the E-Bayes and
hierarchical estimates for the Rayleigh distribotimsed on g-symmetric entropy loss function in gete
samples. Reyad and Othman [16] derived the BayesidrE-Bayesian estimates for the shape paramfeter o
the Gumbell type-Il distribution under type-ll nsoring and by considering squared error, LINEX,

Degroot, quadratic and minimum expected loss fonsti Reyad and Othman [17] studied the Bayes and E-

Bayes estimators for the Kumaraswamy distributiolar type-Il censored data and by using different
symmetric and asymmetric loss functions. Reyadl.ef18] compared the Bayes, E-bayes, hierarchical
Bayes and empirical Bayes estimates of shape pteamed hazard function associated to the Gompertz
model under type-Il censoring and by using squareal, quadratic entropy and LINEX loss functions.

The main objective of this paper is to compare @eBayes and E-Bayes methods for estimating thke sc
parameter corresponding to the Frechet distributddh estimates are obtained based on symmetric and
different asymmetric loss functions. The propertiEthe QE-Bayes and E-Bayes estimates are inatstig

The remaining of the paper is organized as followSection 2, the different loss functions that & used

in this study are reviewed, the quasi-posterior pasterior distributions are obtained. The QE-Byes
estimates fo3 are derived under SELF, WBLF, ELF and MELF in Satt8. In Section 4, the E-Bayesian

estimates fo3 are obtained under SELF, WBLF, ELF and MELF. Intiec5, the properties of the QE-

Bayes and E-Bayes estimates are investigated.dtio8e6, a Monte Carlo simulation is used to assess
performance of the resulting estimates. Finallme@oncluding remarks are presented in Section 7.

2 The Loss Functions, Quasi-posterior and Posterior Distributions

This section contains the different loss functitmest will be used in this study, and derivatiorttoé quasi-
posterior and posterior distributions correspondmthe Frechet distribution.

2.1 Theloss functions

We will use the following loss functions:

2.1.1 Thesguared error loss function (SEL F)

The squared error loss function (SELF) can binddfas follows:
L(B.B)=(B-B) @)

Where § is an estimator gf . The Bayes estimator ¢ relative to the SELF, denoted ﬁys can be
obtained by:

Bus =E(BIX) 5)
Provided that the expectati(El(,BB) exists and finite.

2.1.2 Theweighted balanced loss function (WBLF)

The weighted balanced loss function (WBLF) can &eduas Nasir and Aslam [4] to be
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-~ (B-B)
L33 = 2= (6)
(ﬁﬁ){ﬁ]

Whereg is an estimator off .The Bayes estimator ¢f relative to WBLF, denoted b)f?BW , can be
obtained by:

s _E@B)
= E @l

()

Provided that the expectatiofis(5*|x), E(B|x) exists and finite.

2.1.3 Theentropy loss function (EL F)

Day et al. [19] discussed the entropy loss func{loF) of the form:

L.(3.B) D(%] ~In [%J -1 8)
Whereg is an estimator gf . The Bayes estimator ¢ relative to ELF, denoted b@BE , can be obtained
by:

B =[EB* 0] ©)
Provided that the expectaticEl(ﬂ’1|5) exists and finite.

2.1.4 The minimum expected loss function (M EL F)

Tummala and Sathe [20] defined the minimum expedtsd function (MELF) as follows:

LB.By =P (10)
B

Where 3 is an estimator of3 . The Bayes estimator g8 based on MELF, denoted bg,, , can be

obtained by:

B = % a1
Provided that the expectatiofis(3*|x), E(B87|x) exists and finite.
2.2 The Quasi-posterior distribution
The mean and variance of the Frechet distributieargin (1) are given by:

HEE(O=AE-D) V(x>=ﬂ2r(1—§)—[/3r (1—;1)T=wv ) (12)
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Where

ra-2)
W= —05 -1, V=g
rz(l_;)

Thus, for a random sample of sit® the quasi-likelihood function can be obtained fbe
distribution by using (2) and (3) in (1):

n

o0 25 ™

i=1

ou g

Which gives

n

3%

Q(Xx;4) =—=—-niny
U

We can obtain the quasi-likelihood function in terof @ and 8 by using (12) in (15) to be

n

X,

Q(x;a,ﬁ):m[/}r(l_l)} _4_1
a
Aa-)

The natural exponential of the quasi-likelihooddtion given in (16) is obtained as follows:

n

exlQ (i@ f] = AT (1) exp— =
Ara-_)

Assuminga is known, then the quasi-likelihood function became

exp[Q ;8)| O ,B*"e%
Where
-

(13)

Frechet

(14)

511

(16)

(17

(18)

(19)

We can use the power density function as a pritritution of § with rate parametes and its pdf given

by:
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g(Bla)=ap, B>0,a>0 (20)

The quasi-posterior distribution gf can be obtained by combining (18) and (20):

h(B|x) = exp[Q (x;8) 9 (B|a) __b™ fie s, B>0,a>0 (21)

[edQu:slo@aas -3

wlo

2.3 The posterior distribution
The likelihood function can be obtained for thedfet distribution given in (1) by:

B

L(x,,a.8)= ﬁa Yk [XLJ 4 g e .

Where

H :ZLH (23)

The posterior distribution g8 can be derived by combining (20) and (22) as fatlow

Lo;BAaBla R e

h,(A]x) = =
J,LocmaBlads i+

£>0,a>0 (24)

3 The QE-Bayesian Estimation

In this section, we derive the QE-Bayes estimatesdale parameter of the Frechet distribution dase
squared error (SELF), weighted balanced (WBLF)ragayt (ELF), and minimum expected (MELF) loss
functions.

According to Han [21], the hyper parametemust be chosen to guarantee tgama) given in (20) is a
decreasing function g8 . The derivative ofg (ﬁ|a) with respect tg8 is

do(Bla) _, . ..
7—(3 ey (25)

d a)
Note thata>0 and 0< B <1 thena>1 result in _g;/;| )

<0, and thereforeg (,8|a) is a decreasing
function of3. Consequently, it is more convenient to choosehyyger parametes under the restriction
l<a<c,wherec is a given upper bound and a positive constantnThe can use the following hyper
prior distributions ofa introduced by Han [22]:
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lq(a)zci_l, l<a<c (26)
m@=-2, l<a<c 27)
c -1
2 _
m(a) = (éc_l;), l<a<c (28)

Reyad et al. [23] defined the QE-Bayes estimatattdt , denoted aﬁQEB , to be
Brs = [ Bola) @) da (29)

where  is domain ofa ,[AE’QB (a) is the guasi-Bayes estimation @fwith the hyper parameter and 77(a) is
the hyper prior distribution associated to thedryparametea over Q .

3.1 The QE-Bayesian estimation under squared error lossfunction (SELF)

Theorem 1. Assuming SELF in (4), the quasi-posterior distribatin (21) and the hyper prior distributions
of ain (26), (27) and (28), we have:

(i) The quasi-Bayesian estima,fgﬁS of 8 based on SELF is

~ _ D
Fros = n-a-1 (30)

(i) The QE-Bayesian estimaté(ggm, ,BA’QEBQ and[E’QEBSg of B based omz(a), 77,(a) andrz, (a) respectively
relative to SELF are the following:

o =(%]m{1+ c-1 } (31)

n-c-1

SR (== @

And

Booss :((:Z_Dlj{l_[n(:;l] |n(1+ nf::ilﬂ (33)

Proof. (i) We can obtain the quasi-Bayesian estimég‘g5 by using (5) in (21) as follows:

Dn—ﬂ
rn-a)

D
n-a-1

Bros =Er, (BIX) = j:ﬂ[ g e‘z} d5=
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whereE, is the expectation corresponding to quasi-posteligiribution.
(i) The QE-Bayesian estimatﬁQEBSl based onvz(a) can be obtained by using (26) and (30) in (29):
S LI I S -2 c-1
Posos = .L ( n- a—l] c—lda - [ c- ljln [H n- c- 1}

Similarly, the QE-Bayesian estimatéQngz, ,@’QEBS based onrg,(a) andrz(a) can be obtained by using (27),
(30) in (29) and (28), (30) in (29) respectively:

ﬁQEBSZ :J.E[ b j zza da:(zij (L_l]ln(l"' c-1 j—l
i\n-a-1)c’ -1 c+1l c-1 n-c1

And

~ _f(_D 2c-a), (2D )|, _(n-c-1 _c-1
Pces _L [n—a—lj (c-1y da_(c—lj{l ( c-1 Jln(l+ n- c 1}}
3.2 The QE-Bayesian estimation under weighted balanced loss function (WBLF)

Theorem 2. Assuming WBLF in (6), the quasi-posterior distribat in (21) and the hyper prior
distributions ofa in (26), (27) and (28), we have:

i) The quasi-Bayesian estima,fgBW of B based on WBLF is

D
n-a-2 (34)

IBQBW =

(i) The QE-Bayesian estimatgngBWl, [3’QEBW2 and ﬁ’oEm of B based orz(a),7(a) and 7z,(a)
respectively relative to WBLF are the following:

Bocos :(%)In{l+ c-1 } (35)

n-c-2

Boesu :[Cz?l][(';:f]ln(n n:f 2]-1} (36)

And

Breons = ((:25)1]{1—(” ;: 2] In(1+ nf: zﬂ (37)

Proof. (i) We can obtain the quasi-Bayesian estiméggN by using (7) in (21) as follows:
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2 _ © 2 Dn_a a-n-1 2 —_ D2
Ehl(ﬂ x)_.[)/?{r(n_a)ﬁ eE}dﬂ_(n—a—l)(n—a—Z)

Then, we have

. Ehl('gz‘x)_Dz/(n—a—l)(n—a—2)= D

Foow = En, (B]x) D/(n-a-1) n-a-2

(ii) The QE-Bayesian estimatéQEBW1 based onz(a) can be obtained by using (26) and (34) in (29):

- ° D 1 D c-1
= ——da=| — |In|1+
Pesou: L[n—a—ch—l (c—l) [ n- c- 2}

Similarly, the QE-Bayesiar)ﬁQEBWZ,,@’QEBVV3 based onvz,(a) andrz(a) can be obtained by using (27), (34)
in (29) and (28), (34) in (29) respectively asdulb:

- D 2a . _(2D\[(n-2 c-1 )
Pecow: _L (n —a—Zj c? —1da_(c+1)K c- Jln[h n- c- 2} 1}

And

-~ (e D 2c-a), _( 2D (n-c-2 c-1
Pocows _L[n—a—Zj (c-1y da_(c—l){l ( c-1 Jln[l+ n- c Zﬂ

3.3 The QE-Bayesian estimation under entropy loss function (ELF)

Theorem 3. Assuming ELF in (8), the quasi-posterior distribatin (21) and the hyper prior distributions
of aiin (26), (27) and (28), we have:

i) The quasi-Bayesian estima/f%BE of B based on ELF is

~ D
Boew = n-a

(38)

(i) The QE-Bayesian estimateé}EBEl, ﬁQEBEz and ,éQEBEB of B based on7z(a),/;(a) and 7z,(a)
respectively relative to ELF are the following:

B, = [CLH“ c ‘1}, (39)

n-c¢

o =(E5) R0 “

And
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Boess :[3){1_[2:3'”(“ r‘:iﬂ (41)

Proof. (i) We can obtain the quasi-Bayesian estin]éotgf by using (9) in (21) as follows:

ana
M(n-a)

n

E, (871X )= j:p“{ ﬁ“leﬂ 4p="20

Then, we have

oo =[mn (o)) =552 =2,

(ii) The QE-Bayesian estimatéQEBEl based onvz(a) can be obtained by using (26) and (38) in (29):

- (D Y1 . (D c-1
ﬁC’EB“_L(n—ajc—lda_(c—ljln{l+ n- c}

Similarly, the QE-Bayesiau;ﬁ’QEBEZ,,é’QEBE3 based onz,(a) andrz(a) respectively can be obtained by using
(27), (38) in (29) and (28), (38) in (29) respeeljvas follows:

~ (D )2 , (2D n c-1)_
S [EREPRE S [EENE S

And

e 2 e Bl
e iln-a) (c-17 c-1 c-1 n-c
3.4 The QE-Bayesian estimation under minimum expected loss function (MELF)

Theorem 4. Assuming MELF in (10), the quasi-posterior disttibn in (21) and the hyper prior
distributions ofa in (26), (27) and (28), we have:

i) The quasi-Bayesian estimaf%BM of B based on MELF is

T n-a+l (42)

(i) The QE-Bayesian estimatﬁ@EBMl, ,@QEBMZ and BQEBW based omz(a),77,(a) and rz,(a) respectively
relative to MELF are the following:

5 D c-1
= = 43
ﬁQEBMl (C—l)ln{l+n—c+1}' ( )

10
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{22l 22

And

Brons :(:_Dlj{l_[n:;rl] |n[1+ n:ilﬂ (45)

Proof. (i) We can obtain the quasi-Bayesian estimégﬁe4 by using (11) in (21) as follows:

) o g oo

Then, we have

2 =Eh1(,3’1‘x)= (n-a)/D _ D
e Ehl(ﬁ’z\x) (n-a)(n-a+l)/D* n-atl

(i) The QE-Bayesian estimat;éQEBMl based onz(a) can be obtained by using (26) and (42) in (29):

. [ D 1 . (D c-1
ﬁQEBMl_L(n—a+1)c—1da_(c—1jln[l+ n- c+ 1}

Similarly, the QE-Bayesiama’QEBMz, ,éQEBMa of B based onz(a) andr(a) respectively can be obtained by
using (27), (42) in (29) and (28), (42) in (29)pestively as follows:

- c D 2a 2D n+1 c-1
- da=| — —|In| 1+ -1
:BQEBMZ J.l(n_a_,_l) ct-1 (c+1j{[ c—- 1) ( n- C+1j :|

And

= [ i (S ()
4 The E-Bayesian Estimation

In this section, we propose the E-Bayes estimatesdale parameter of the Frechet distribution dbase
squared error (SELF), weighted balanced (WBLF)ragyt (ELF), and minimum expected (MELF) loss
functions.

4.1 The E-Bayesian estimation under squared error lossfunction (SELF)

Theorem 5. Assuming SELF in (4), the posterior distribution(%) and the hyper prior distributions af
in (26), (27) and (28), we have:

11
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(i) The Bayesian estima1;éBS of B based on SELF is

-~ _na+a
Bes oH (46)

(i) The E-Bayesian estimatgs,_,, 3., and 3., of 8 based omz(a),75,(a) and 7z(a) respectively
relative to SELF are the following:

~  _2na+c+1

YT 47
BEBSl 20’H 4 ( )
5o _dnac+)+ 2Cc+c+1) 48
ﬁEBSZ 30’H (C +1) ( )
And
- :3na(c—1)+ c(c+1)-2 49
IBEBSEI 30’H (C _l) ( )

Proof. (i) We can obtain the Bayesian estimﬁg by using (5) in (24) as follows:

ned

5 S na+a
Bis =En (BIX)=| B B e |df=—r
s h, ( ) Io F(n +%) aH

whereE, is the expectation corresponding to posterioridistion.
2

(ii) The E-Bayesian estimat;éEBSl based on/g(a) can be obtained by using (26) and (46):

[3, _J‘c na+a 1da_2na+c+1
FohlaH Je-1 2aH

Similarly, the E-Bayesian estima’rﬁém,ﬁEBSg of B based on(a) andrz(a) can be obtained by using
(27), (46) and (28), (46) respectively as follows:

[5’5352 :J-C na+a) 2a da= 3na(c+ 1)+ 2(¢+ c+ 1)
aH )c*-1 3oH c+1)

And

K _J‘C[na+aj 2(c- a)da_ 3ra(c-1)+ ofcr 1)- 2
2 L aH ) @c-1y 3oH -1

4.2 The E-Bayesian estimation under weighted balanced loss function (WBLF)

Theorem 6. Assuming WBLF in (6), the posterior distribution(i24) and the hyper prior distributions af
in (26), (27) and (28), we have:

12
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(i) The Bayesian estima’rﬁBW of B based on WBLF is

BBW _ a(n+l)+a
aH (50)

(i) The E-Bayesian estimatgs,,,, ..., and3.,,,, of B based omz(a),77(a) and 7z,(a) respectively
relative to WBLF are the following:

_2a(n+l)+c+1

IBEBW1 - 2aH ’ (51)
/éEsz _3a(n+Dc+ D+ 2C°+c+1) (52)
3aH (c +1)
And
- _ 3a(n+l)c-D+c(c+)- 2 53
Peows 3aH € -1) 53)

Proof. (i) We can obtain the Bayesian estimm by using (7) in (24) as follows:

Ehz(ﬁz‘x):J’:ﬁz L'g

a
I(n +;)

! e | 4= (na + a)(zna2+ at+a)
aH

Then, we have

En, (IBZ‘X) _(na+a(na+a+a)/a®H’ _a(n+)+a

Pow = Ep, (IB\X) (na +a)/aH aH

(ii) The E-Bayesian estimat,éEEWl based onvz(a) can be obtained by using (26) and (50) as follows

. =J-C[a(n +1)+ajida= 20 (n+1)+c+ 1l
aH c-1 2aH

Similarly, the E-BayesiaﬁEsz, /A}EBWS of B based oz (a) andrz(a) can be obtained by using (27), (50)

and (28), (50) respectively:

da
aH

; =r(a(n +1)+aj 2a . _ (n+(ct L+ 2€ + o+ 1)
EBW 2 02 _1 &7H (C+1)

And

2 _r(a(n +1)+aj 2(c=a) - T (n+ (e Dt c(er 1) 2
EBW3 aH (C _1)2 - 3 H (C—l)

13



Reyad et al.; BJMCS, 19(2): 1-29, 2016; ArticleBuMCS.29231

4.3 The E-Bayesian estimation under entropy loss function (ELF)

Theorem 7. Assuming ELF in (8), the posterior distribution(4) and the hyper prior distributions ®&fin
(26), (27) and (28), we have:

i) The Bayesian estimat)éBE of B based on ELF is

ﬁse _a(n-N+a
aH (54)

(i) The E-Bayesian estimatgs,._,, 5..., and ..., of 4 based omz(a), 77,(a) and 7z,(a) respectively
relative to ELF are the following:

~ _2a0(h-1)+c+1

/85351 - 2aH ’ (55)
f, = 3a(n-1)c+1)+2c*+c+ 1) (56)
3aH (c+1)
And
5 _ a(n-1)c-1+c(c+1)-2 57
Feoes 3aH € -1) ®7)

Proof. (i) We can obtain the Bayesian estimﬁg by using (9) in (24) as follows:

a
n+—

H aH

n+l-1
o gM|df=———
A o a(n-1+a

En (871X)=] 8"

Mn+—=)
a

Then, we have

R P T

a(n-1)+a aH

(ii) The E-Bayesian estimat,éEBEl based onvz(a) can be obtained by using (26) and (54):

5 _[fah-D+a) 1 :Za(n—1)+c+1
ﬂEBEl_.[ [ aH ]c—lda 20 H
Similarly, the E-Bayesian estimatgs, _,, B....of 8 based omz,(a) andr(a) can be obtained by using
(27), (54) and (28), (54) respectively as follows:

J . =r[a(n _1)+a] Zza ga= 2 (M-He+ I+ 2€C+ et 1)
aH c -1 H (c+1)

And

14
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,[;’ _r(g(n _1)+aj 2(c- a)da— 3 (n— 1)(c— 1+ c(c+ 1) 2
EBES — aH c-1 H (-1

4.4 The E-Bayesian estimation under minimum expected loss function (MELF)

Theorem 8. Assuming MELF in (10), the posterior distributian (24) and the hyper prior distributions of
ain (26), (27) and (28), we have:

i) The Bayesian estimatﬁBM of B based on MELF is

IéBM _ a(n-2)+a
aH (58)

(i) The E-Bayesian estimatg,, . 3..,, and 3., of B based omz(a),z,(a) and 7z,(a) respectively
relative to MELF are the following:

~  _2a(n-2)+c+1

ﬁEBMl - Tv (59)
/S’EBMZ _3a(n-2)c+ 1+ 2C°+c+ 1) (60)
3aH (c +1)
And
~ _3a(n-2)c-D+c(c+1)-2
ﬁEBM3 - 3aH (C _1) (61)

Proof. (i) We can obtain the Bayesian estimﬁ% by using (11) in (24) as follows:

a
n+—

o H a Nl a,ZHZ
E 2IX )= - a g™ ldB=
hz(ﬁ‘ ) _Lﬁ I'(n+3)ﬁ B (na+a-a)(na+ a-2a)
a

Then, we have

Ehz('gil‘x)_ aH/(na+a-a) _a(n-2)+a
E, (ﬁ’z\x) Coa’H?/(na+a-a)(na+a-2a)  aH

Bow =

(i) The E-Bayesian estimatﬁEBMl based onvz(a) can be obtained by using (26) and (58) as follows:

ﬁEBMl:r(a(n—ZHaj 1 jas 20(n-2y+c+1

aH c-1 2aH

Similarly, the E-BayesiarﬁEBM2,,[3EBM3 of B based omz(a) andrz(a) can be obtained by using (27), (58)
and (28), (58) respectively as follows:

15
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; _J‘C[a(n—Z)+aj 2a . _ 2 (n-2)(c+ 1t 2@ + o+ 1)
FBaMz aH -1 3oH C+1)

And

aH -

2 _J-c[g(n—z)'l'aj 2(c-a) 4 - 3 (n= 2)(c- 1+ o+ 1) 2
EBM3 — . (C_l)z 3aH (C—l)

5 Properties of the QE-Bayesian and E- Bayesian Estimates

In this section, we investigate the propertieshef QE-Bayesian and the E-Bayesian estimates.
5.1 Therelations between the QE-Bayesian estimates
In this subsection, we derive the relations amtegQE-Bayesian estimates.

5.1.1 Relations among ,éQEBSi(i =1,2,3)

Theorem 9. According to (31), (32) and (33) we have:

() Breoss < Bogos < B ogos WM Breoss =M Bogos =M B qeas
Proof. See Appendix (1).

5.1.2 Relations among ,@QEBW,(i =1,2,3)

Theorem 10. From (35), (36) and (37) we obtain:

() Brcows < Bocoun < B eeone (i) 1M By =M Bogge =M B e
Proof. See Appendix (1).

5.1.3 Relationsamong ,@QEBE, (i=123)

Theorem 11. Using (39), (40) and (41) we have:

() Breoes < Bocon < Bowos (i) M B e, =M B, =M B e

Proof. See Appendix (1).

5.1.4 Relations among ,BA’QEBM‘ (i =1,2,3)
Theorem 12. From (43), (44) and (45) we have:
(I) ﬂQEBM3 < ﬂQEBMl < ﬂQEBMZ (") Inlm ﬁQEBMl = |r|][Tl ﬁQEBMZ = lLl:Tl ﬂQEBMa

Proof. See Appendix (1).
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5.2 Therelations between the E-Bayesian estimates

In this subsection, we show the properties of tHgalfesian estimates.

5.2.1 Relationsamong A, (i =1,2,3)

Theorem 13. Using (47), (48) and (49) we have:
() Beoss < Besa < Breos

Proof. See Appendix (2).

5.2.2 Relationsamong £, (i =1,2,3)

Theorem 14. From (51), (52) and (53) we obtain:
(I) ﬁEBWC& < BEBWl < BEBWZ
Proof. See Appendix (2).

5.2.3 Relationsamong 4. (i =1,2,3)

Theorem 15 According to (55), (56) and (57) we have:

(I) ﬁAEBEC% < BEBE:L < BEBEZ

Proof. See Appendix (2).

5.2.4 Relationsamong 4., (i =1,2,3)

Theorem 16. From (59), (60) and (61) we have :
) Beous < Beows < Beows

Proof. See Appendix (2).

6 Monte Carlo Simulation

(”)H[‘l 185331 = urﬂ’ ﬂEBSZ = IL'TL B EBS

(”)H[Tl :BEBW1 = urfl ﬂEBWZ = umm IBEsws

(”)H[Tl :BEBEl = urﬂe IBEBEZ = umm ﬁEBEﬁ

(”)Llr:rl ﬁEBMl = Ilrno ﬁEBMZ ZI'!'ITL ﬂEBMZ%

H

In this section a Monte Carlo simulation is perfedrto assess the performance of the QE-Bayes and E-
Bayes estimates associated to scale parametee &ltelehet distribution discussed in the previowsices.
The simulation structure can be described in tHeviing steps:

Step (1):Set the default combinations (true valuesy@ind c which are(a =3,c = 3),(@ = 4¢c = 3)
and (a = 3,c = 4) respectively. We considered different sample sizestudy their effect on the

resulting estimates.

Step (2):For these cases, we generatieom the uniform prior distributiongl,c) given in (26), (27)
and (28). For given values af, we generate3 from the power density given in (20).

17
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Step (3):For known values ofr , samples are generated from the Frechet distribgiiem in (1).

Step (4):Calculate the QE-Bayes and E-Bayes estimatesaté garameter associated to the Frechet

distribution according to formulas that have beerived.

Step (5):We repeated this process 10000 times and comipaitgbisolute bias (ABias) and mean square

error (MSE) for the estimates for different sangies and given values of, C where

ABias:|ﬁ—ﬁ|

MSE(6) = ﬁ;(ﬁ—ﬂ)zand

[ stands for an estimator ¢ . The simulation results are shown in Tables 1-4.

Table 1. Average values of ABiasand M SEs (within parenthesis) for estimates of the parameter 3

based on SELF
Sample QE-Bayes E-Bayes
n c=3 a=3 c=4, a=3 c=3 a=4 c=3 a=3 c=4, a=3 c=3 a=4
15 0.1684913 0.2234576 0.1691563 0.3341981 0.3014775 0.447804
(0.0477689) (0.0774759) (0.0371641) (0.1201167) (0.1041075) (0.2042198)
0.1800712 0.2480614 0.180813 0.3330296 0.2988633 0.4472106
(0.0523483) (0.0905395) (0.0414832) (0.1193969) (0.1027056) (0.2037076)
0.1453315 0.1824512 0.1458431 0.3365351 0.3058345 0.4489909
(0.0394372) (0.0584776) (0.0293512) (0.1215665) (0.1064767) (0.2052437)
25 0.0910873 0.1189299 0.0918647 0.3503312 0.3215957 0.455914
(0.0182147) (0.026802) (0.012699) (0.1269499) (0.1101182) (0.2098973)
0.096808! 0.130586: 0.097628 0.349652 0.320071 0.455566!
(0.0194406) (0.0300668) (0.013856) (0.1264933) (0.109192) (0.2095873)
0.079644 0.099501! 0.080336 0.351687! 0.324136 0.456608
(0.0159626) (0.0219757) (0.0105856) (0.1278658) (0.1116726) (0.2105181)
35 0.0617829 0.0817595 0.0628113 0.3576093 0.3283129 0.4597598
(0.0105762) (0.0151023) (0.0066201) (0.1306952) (0.1123406) (0.2126437)
0.0655625 0.089356 0.0662152 0.3571325 0.3272327 0.4595147
(0.0111282) (0.0165633) (0.00714122) (0.1303631) (0.1116579) (0.2124214)
0.0542237 0.0690987 0.0551908 0.3585629 0.3301133 0.4602499
(0.00955921) (0.0129273) (0.0056654) (0.1313606) (0.1134837) (0.2130887)
50 0.0435082 0.0539605 0.0423655 0.3610573 0.3351018 0.4628626
(0.0063472) (0.0081410) (0.0036152) (0.1322711) (0.1153076) (0.2151287)
0.046016. 0.058925! 0.044886: 0.360725. 0.3343537 0.462692
(0.0066034) (0.0087691) (0.0038481) (0.1320357) (0.1148186) (0.2149731)
0.038491! 0.045685! 0.037322 0.36172; 0.336348 0.463202
(0.0058729) (0.0072045) (0.0031876) (0.1327424) (0.1161252) (0.2154401)
70 0.0305688 0.0378697 0.0297147 0.3644888 0.3399208 0.4647774
(0.0040892) (0.005006) (0.0021313) (0.1341684) (0.1176508) (0.2166191)
0.032296 0.0412683 0.0314518 0.3642536 0.3393908 0.4646569
(0.0042135) (0.0053073) (0.0022438) (0.1339992) (0.1172967) (0.2165079)
0.0271145 0.0322053 0.0262405 0.3649593 0.3408043 0.4650182
(0.0038586) (0.0045555) (0.0019245) (0.1345074) (0.1182423) (0.2168417)
100 0.0204802 0.0258168 0.0208214 0.3666277 0.3427861 0.4659545
(0.0025558) (0.0034437) (0.0012928) (0.1353307) (0.1189337) (0.2175354)
0.021655! 0.028121. 0.022005! 0.366463 0.342416 0.465870!
(0.0026127) (0.0035852) (0.0013465) (0.1352114) (0.1186833) (0.2174575)
0.0181294 0.0219761 0.0184519 0.3669556 0.3434019 0.4661225

(0.0024503)

(0.0032314)

(0.0011939)

(0.1355692)

(0.1193516)

(0.2176913)
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Table 2. Average values of ABiasand M SEs (within parenthesis) for estimates of the parameter [

based on WBLF

Sample QE-Bayes E-Bayes

n c=3, a=3 c=4, a=3 c=3, a=4 c=3 a=3 c=4, a=3 c=3, a=4

15 0.2445485 0.2118284 0.2457175 0.3131652 0.2944054 0.4435615
(0.0828877) (0.0644792) (0.0705616) (0.1076112) (0.0965068) (0.1921575)
0.2583405 0.2298192 0.2596009 0.3119967 0.2924772 0.4329681
(0.0905312) (0.0731933) (0.0778888) (0.1069442) (0.0954655) (0.1916645)
0.2169645 0.1818427 0.2179507 0.3155022 0.2976193 0.4347484
(0.0687765) (0.0514272) (0.0570778) (0.1089535) (0.0982598) (0.1931462)

25 0.1270834 0.1597713 0.1281292 0.3381215 0.3063521 0.4475748
(0.0270365) (0.0394544) (0.0210929) (0.1188791) (0.1010742) (0.20252627)
0.133363 0.1725961  0.134455°  0.337443  [(0.304827 0.447227.
(0.0288457) (0.0441281) (0.0228288) (0.1184399) (0.1001965) (0.2022221)
0.1145234 0.1383951 0.1154756 0.3394782 0.3088927 0.4482697
(0.0236589) (0.0324084) (0.0178631) (0.1197605) (0.1025479) (0.2031348)

35 0.085202 0.1079372 0.0864201 0.3490269 0.3175108 0.4538784
(0.0144619) (0.020634) (0.0103188) (0.1247904) (0.1056218) (0.2073421)
0.0892295 0.1160407 0.0904803 0.3485501 0.3164305 0.4536329
(0.0152421) (0.0226226) (0.0110678) (0.1244668) (0.1049632) (0.2071228)
0.0771469 0.0944313 0.0782997 0.3499805 0.3193111 0.4543682
(0.0130001) (0.0176046) (0.0089202) (0.1254391) (0.1067249) (0.2077812)

50 0.058887. 0.07081t  0.057825. 0.355083  0.327620  0.458789
(0.0081178) (0.0104859) (0.0052442) (0.1280693) (0.1104694) (0.2114122)
0.061505! 0.076067: 0.060457. 0.354751  0.326872'  0.458619
(0.0084668) (0.0113203) (0.0055693) (0.1278384) (0.1099919) (0.2112558)
0.0536505 0.0622386 0.0525609 0.3557475 0.3288676 0.4591288
(0.0074613) (0.0092160) (0.0046356) (0.1285326) (0.1112679) (0.2117186)

70 0.0410899 0.0493738 0.0402963 0.3602545 0.3346201 0.4618868
(0.0049395) (0.0061196) (0.0029102) (0.1311371) (0.1141351) (0.2139577)
0.0428698 0.0528771 0.0420864 0.3600192 0.3340924 0.4617663
(0.0051054) (0.0065116) (0.0030642) (0.1309698) (0.1137866) (0.2138472)
0.0375314 0.0435351 0.0367163 0.3607254 0.3355035 0.4621277
(0.0046268) (0.0055211) (0.002621% (0.1314721) (0.1147171) (0.2141788)

10C 0.027607: 0.033579.  0.028002° 0.363676: 0.339090°  0.463938
(0.0029432) (0.0039632) (0.0016614) (0.1331936) (0.1164425) (0.2156692)
0.02880:! 0.0539320  0.029212. 0.363512  0.338721. 0.463854
(0.0030185) (0.0041446) (0.0017337) (0.1330754) (0.1161949) (0.2155916)
0.0252073 0.0296578 0.0255839 0.3640044 0.3397066 0.4641065
(0.0028014) (0.0036856) (0.0015257) (0.1334302) (0.1168558) (0.2158244)

Table 3. Average values of ABiasand M SEs (within parenthesis) for estimates of the parameter [

based on ELF

Sample QE-Bayes E-Bayes

n c=3 a=3 c=4, a=3 c=3 a=4 c=3 a=3 c=4, a=3 c=3 a=4

15 0.1042111  0.1053038 0.1044502  0.3552311 0.3329689 0.4620465
(0.0273614) (0.0264504) (0.0181903) (0.1335757) (0.1189818) (0.2167166)
0.1140718  0.1194005 0.1143763  0.3540625 0.3310408 0.4614531
(0.0299403) (0.0301503) (0.0205505) (0.1328034) (0.1177835) (0.2161871)
0.0844895  0.0818092 0.0845979  0.3575681 0.3361826 0.4632334
(0.0228032) (0.0211873) (0.0140681) (0.1351301) (0.1209964) (0.2177778)
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Sample QE-Bayes E-Bayes
n c=3 a=3 c=4, a=3 c=3 a=4 c=3 a=3 c=4, a=3 c=3 a=4
25 0.0582275  0.0817361 0.0587642  0.3625409 0.3368394 0.4642531
(0.0124635) (0.0182351) (0.0073497) (0.1353316) (0.1196469) (0.2174139)
0.0634616  0.0923771 0.0640331  0.3618626 0.3353151 0.4639057
(0.0132325) (0.0203984) (0.0080540) (0.1348577) 0.1186722) (0.2170978)
0.047759. 0.064001 0.048213 0.363897°  0.339380.  0.464948
(0.0110928) (0.0151424) (0.0061094) (0.1362821) (0.1212822) (0.2180468)
35 0.039784 0.057196. 0.040634 0.366191  0.399115!  0.465641
(0.0079382) (0.0111783) (0.00416628) (0.1367517) (0.1192998) (0.2180165)
0.0433383  0.0643321 0.0442173  0.3657148 0.3380349 0.4653965
(0.0082980) (0.0121922) (0.0044958) (0.1364112) (0.1185932) (0.2177912)
0.0326767  0.0453037 0.0334692  0.3671452 0.34091554 0.4661317
(0.0072954) (0.0097177) (0.0035847) (0.1374341) (0.1204834) (0.2184674)
50 0.0287701  0.0377528 0.0275501  0.3670308 0.3425829 0.4669359
(0.0050982) (0.0064365) (0.0025043) (0.1365457) (0.1202614) (0.2188812)
0.0311749  0.0425107 0.0299675  0.3666989 0.3418348 0.4667662
(0.00527210) (0.0068819) (0.0026554) (0.1363063) (0.1197596) (0.2187242)
0.0239(07 0.029822: 0.022715. 0.367694  0.343829  0.472753
(0.0047856) (0.0057956) (0.0022371) (0.1370251) (0.1210965) (0.2191955)
70 0.020357. 0.026706: 0.019444. 0.368723  0.345221  0.467667
(0.0034771) (0.0041801) (0.0015899) (0.137236) (0.1212236) (0.2192975)
0.0220341  0.0300052 0.0211308  0.3684879 0.3446915 0.4675475
(0.0035632) (0.0043980) (0.0016643) (0.1370646) (0.1208637) (0.2191855)
0.0170038  0.0212088 0.0160717  0.3691936 0.3461051 0.4679088
(0.0033218) (0.0038654) (0.00145831) (0.1375791) (0.1218246) (0.2195214)
100 0.0134982  0.0182135 0.0137862  0.3695788 0.3464812 0.4679705
(0.00227514) (0.0030522) (0.0010319) (0.1374852) (0.1214525) (0.2194099)
0.0146499  0.0204708 0.0149465  0.3694149 0.3461117 0.4678865
(0.0023147) (0.0031563) (0.0010681) (0.1373651) (0.1211993) (0.2193316)
0.011194 0.014451 0.011465. 0.369906  0.347097.  0.468138
(0.0022040) (0.0029015) (0.0096755) (0.1377257) (0.1218749) (0.2195664)
Table 4. Average values of ABiasand M SEs (within parenthesis) for estimates of the parameter [
based on MELF
Sample QE-Bayes E-Bayes
n c=3 a=3 c=4, a=3 c=3 a=4 c=3 a=3 c=4, a=3 c=3 a=4
15 0.0491647 0.0607407 0.0490391  0.3762639  0.3522507 0.4762891
(0.0166377) (0.0174281) (0.0086789) (0.1479883) (0.1313965) (0.2296507)
0.0576629 0.0733488 0.0575935  0.3750954  0.3503225 0.4756956
(0.0178866) (0.0195686) (0.0097416) (0.1471626) (0.1301197) (0.2291031)
0.0321682 0.0397273 0.0319299  0.3786009  0.3554644 0.4774759
(0.0145853) (0.0145834) (0.0069980) (0.1496485) (0.1335419) (0.2307483)
25 0.028111 0.047721  0.028418 0.374750 0.352083  0.472592
(0.0091221) (0.0128666) (0.0043863) (0.1440242) (0.1296605) (0.2250759)
0.032917 0.057473  0.03:261: 0.374072. 0.350558  0.472244
(0.0095316) (0.0141649) (0.00473487) (0.1435331) (0.1286373) (0.2247537)
0.0184978 0.0314672 0.0187342  0.3761073  0.3546237 0.4732872
(0.0084441) (0.0111331) (0.0038309) (0.1450093) (0.1313765) (0.2257209)
35 0.0190812 0.0341027 0.0197636  0.374774 0.3499176 0.4715234
(0.0063509) (0.0086042) (0.0027598) (0.1429599) (0.1264994) (0.2234604)
0.0224294 0.0408182 0.0231386  0.3742972  0.3488371 0.4712783
(0.0065488) (0.0092413) (0.00292793) (0.1426111) (0.1257687) (0.2232322)
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Sample QE-Bayes E-Bayes
n c=3 a=3 c=4, a=3 c=3 a=4 c=3 a=3 c=4, a=3 c=3 a=4
0.0123856 0.0229103 0.0130138 0.3757276  0.3517177 0.4720135
(0.0060234) (0.0077455) (0.0024924) (0.01436591) (0.1277228) (0.2239173)
50 0.0146339 0.0222144 0.0133398  0.3730042  0.3500644 0.4710092
(0.004312090) (0.0053000) (0.0018527) (0.1408942) (0.1253266) (0.2226677)
0.016941 0.026777  0.015659 0.372672. 0.34€315¢  0.470839
(0.00441287) (0.0055833) (0.0019314) (0.1406497) (0.1248148) (0.2225092)
0.010018 0.014607°  0.008700. 0.373668 0.351310° 0.471348
(0.004142744) (0.0049213) (0.0017277) (0.1413807) (0.1261822) (0.2229847)
70 0.0093626 0.0158695 0.0094719  0.3727518  0.3505223 0.4705585
(0.0027891) (0.0036181) (0.0012670) (0.1401996) (0.1248534) (0.2219928)
0.0109885 0.0190725 0.0111098  0.3725164  0.3499923 0.4704381
(0.00283526) (0.0037596) (0.0013061) (0.1400262) (0.1244878) (0.2218802)
0.0061109 0.0105312 0.0061962  0.3732226  0.3514058 0.4707994
(0.0027128) (0.0034282) (0.0012040) (0.1405468) (0.1254639) (0.2222182)
100 0.00665719 0.0107645 0.0068931  0.3725314  0.3501765 0.4699865
(0.0020952) (0.0027814) (0.0008724) (0.1396574) (0.1239988) (0.2212925)
0.007785 0.012976.  0.008030: 0.372366 0.349807  0.469902
(0.0021184) (0.0028501) (0.0008922) (0.1395363) (0.1237429) (0.2212139)
0.004399 0.007078  0.004618: 0.372857 0.350792°  0.470154
(0.0025644) (0.0026886) (0.0008407) (0.1398999) (0.1244259) (0.2214498)
7 Conclusion

1- From simulation study, it is concluded that QE-Baystimates performs better than E-Bayes
estimates. That means, the QE-Bayes estimatesrhismiaum ABias and MSE as compared with
the E-Bayes estimates based on different lossiumscand by considering various cominations of
Ma ande .

2- By comparing the QE-Bayes estimates based oniffteeet loss functions, we can conclude that
the QE-Bayes estimates based on MELF are the nifaseet whereas the QE-Bayes estimates
based on WBLF are the least efficient in all cases.

3- Furthermore, by observing the QE-Bayes estimatsedan different combinations OQ'C, we

. > .
can deducte that the best results are obtained v%er? whereas the worst results are obtained

a<c

when for all loss functions.

From the previous discussion we conclude that tlggested criteria yield more efficient estimatoss a
compared with the original E-Bayes method and sy ¢a perform.
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APPENDIX -1
Proof of Theorem 9.

(i) From (31), (32) and (33), we get

BQEm-ﬁ*’QEBf[CL_J{ 2(” - l)} [ —— J 2} (A1)
SRINEY TR

2

For —1<x <1, we haveln(1+x)=x —X—+X—3—X—4+...=i (—1)“)(—k )
2 3 4 k

. - Cc
Assumingx = whenl<c<n-c, <

n-c-1 n-c n-c¢

<1, we get

[ c-1 (-1
n-c-1 2(n-c-1f

[“ 2(n—c—1)}|n[1+nc—1 }—2:[& 2(n- c- 1)} RN o I ot 2

c-1 -c-1 c-1 3(n-c-1f 4(n-c 1)
(c-1¢
— - .
| 5(n-c-1y |
_c¢c-1  (c-1y . c-1) (-1 . (c-1f . om c-1
“n-c-1 2(n-c-1f 3(n-c-1 4mc 1 S5m ey e
L 2e-1 2e-1y , 2-1 _ 26- 1) s

3n-c-17 4(n-c-1f 5n-c-1f 6 c 1j

_ -y (2 _1j c-y [ 1 1) -3 (_2__3+ ¢ 9 (_1__1

“(n-c-173 2/ (n-c- 3 2) (-c-Yl 5 +c D 5
-1  (c-1 . 3c-1  2c-1f

6(n-c-1¢f 6(n-c-1f 20-c-1f 15 c B

(c -1y [1_ c-1 }r (c-1y [9_ 8(c—1)}rm
1

T 6(n-c-1y n-c- 60(n- c- 1j - c 1

Ag)

According to (A.1), (A.2) and (A.3), we have

/BQEBS1 _ﬂQEBS >0, /BQEBS _:B Qeas” 0
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That is ,BQEBss < EQEBS < /BQEBS

(i) From (A.1) and (A.2), we get

(c -1y { _c-1 }
. . D ). |6(n-c-1p n-c-1
| - = —| =0
n'[rl (ﬁQEBSl 'GQEB$) (C _1) r![rl (c _]_)4 |:9_ 8(c- 1):|+
60(n —c - 1) n-c-1
(€ -1y [ _c-1 }
. r _( D), 6(n —c—1y n-c-1 _
um(ﬂosasz ﬂQEBa)_(C_'_ljlr!mu (c-1)° |:9_ 8(0—1)}_'_ °
60(n -c - 1 n-c-1|
According to (A.4) and (A.5), we have
That is umw ﬁQEBSl = |r||f:fl ,éQEBg :|inf:fl ﬁQEBS
Proof of Theorem 10.
(i) From (35), (36) and (37), we get
/}QEBM _[;QEBM = [%){[h 2(nc—_cl— 2)} |n[1+ nf;} 2} - 2}
Bresws = Bogown = (clﬂj{[“ 2(nc—_cl— 2)} |n[1+ —nf;i 2} - 2}
Based on (A.3), we can obtain
[1+ 2(n —c—Z)}ln[1+ c-1 }_ g (Y [1_ c-1 }
c—-1 n-c-2 6(n- c- 2f n-c-2
c-1° [9_ 8(c-1)}+
60(n—c-2) n-c-2|

According to (A.6), (A.7) and (A.8), we have
/BQEBW1 - :BQEBV\B >0, IBQEBV\B - /8 QEBW >0

That is ﬂQEBW3 < IBQEBM < ﬂQEBV\E

(A.4)

(A.5)

(A.6)

(A7

(A.8)
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(i) From (A.6) and (A.7), we get

(c -1y [1_ c—l}
6(n-c-2y n-c-2

. ~ ~ D ).
_ - = 9

M Bresus =~ Bosons [C_Jum " ey [9_ o 1)} 0 (A.9)
60(n -c - 2)f n-c-2|
(c-17? [1— c-1 }

s 5 _(D 6(n-c-2y n-c-2 B

ln'['l(ﬁosswz ﬁQEB\M)_(C_*_len”Il .\ -1 lig_ 8(C—l):|+ =0 (A.10)
60(n -c- 2) n-c-2|

According to (A.9) and (A.10), we have
That iS lﬂ'[u ﬁQEBWl = I!\m ﬁQEBWz :Ilnrjl IBQEBV\B

Proof of Theorem 11.

(i) From (39), (40) and (41), we get

:BQEBEl - IBQEBB = (L] {|:1+ 2(n- C):| In[1+ €= 1:| - 2} (A]_l)
c-1 c-1 n-c
[}QEBEZ _[}QEBEL = [lJﬂ:l*' 2(n - C):| In[1+ C_1:| - 2} (A]_Z)
c+1 c-1 n-c
Based on (A.3), we can get
[“ 2(n—c)}|n{1+ c—1}_2: (c-1y {1_ c—1}+ (c- 1y {9_ 8(c- 1)}+ ' (A13)
c-1 n-c 6(n— cy n-c| 60(n o - c

According to (A.11), (A.12 and (A.13), we have
IBQEBB - BQEBFB >0, ﬂQEBE _B QEBE >0

That is ﬂQEBEB < IBQEBEL < ﬂQEBE

(i) From (A.11), (A.12) and (A.13), we get

-1y [1_0—1}

(g - g )=[ B Jiml 8O-yl n-c

Inl[[l(ﬂQEBEl :BQEBEB)_[C_ljlr!IIl . (C‘l)A |:9_8(C_1):l+
60(n—C)4 n-c

=0 (A.14)
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(c -1y [1— c—l}
D ) 6(n-c) n-c
—— |[lim =
c+1)n-= (c-1)° {9_8(0—1)}+
60(n -c)* n-c |

ol -l

According to (A.14) and (A.15), we have
That is liM B =M Bose =M B oees
Proof of Theorem 12.

(i) From (43), (44) and (45), we get

5 iy _( D 2(n—c+1) c-1 |
IBQEBM;L lBQEBMs - (;L] {[l*‘ T:| In[1+ m:| 2}

A o (D 2(n-c+1) c-1 |
:BQEBMZ :BQEBMl - [m}ﬂ:l‘* T:| In[1+ m:| 2}

Based on (A.3), we can obtain

[1+2(n—c+1)}|n[1+ c-1 }_2_ (c-1y [1— c—1}

- n-c+1 - 6(n— c+ 1f n-c+1
- 4 -—
(c-1) 9- 8(c-1) .
60(n —c+ 1y n-c+1

According to (A.16), (A.17) and (A.18), we have
BQEBMl - IBQEBM3 >0, lBQEBMZ - lBQEBM >0

That is ,BQEBM3 < IBQEBML < IBQEBM2

(i) From (A.16), (A.17) and (A.18), we get

(c -1y { _c-1 }
D J 6(n—c+1y n-c+1
— |lim =
c—1)n (c-1° [9_ 8(c—1)}+
60(n —c + 1y n-c+1|

LITO (IBQEBMI - [;QEBMS) = (

(c-1y7 _c-1
lj”m 6(n—c+1)2[ n—c+1} N
c+1)n- (c-1)° [9_ 8(c—1)}+m
60(n —c+1y n-c+1

Inl[rl ('éQEBMZ - IéQEBMl) = (

According to (A.19) and (A.20), we have

That is Inlm ﬁQEBMl = |rI]I:Tl IBQEBMZ = l!ﬂl ﬁQEBMa

(A.15)

®)

1R)

(A.18)

(A.19)

(A.20)
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APPENDIX -2
Proof of Theorem 13.
(i) From (47), (48) and (49), we can obtain

- - c-1
IBEBSI_IBEBSS ::w (Bl)

c-1°

B.2
6aH (c +1) (8:2)

ﬁEBSZ _ﬁEBS =
According to (B.1) and (B.2), we have
135551 _l[;EBs; >0, l[;EBsz_l[; eas> O

That IS ﬁAEBSB < ﬁAEBS < B EBZ
(i) From (B.1) and (B.2), we get
. - - c-1). 1
u[‘l(ﬁEBa _IBEBss) = (Tjurﬂ’[ﬁ} =0 (B.3)
N _(c-17 . 1|_
ur:rl(lgzasz ﬂEBS)_mqu F =0 (B.4)
According to (B.3) and (B.4), we have
That is M g =M Beg =lim B o
Proof of Theorem 14.

(i) From (51), (52) and (53), we can obtain

c-1

ﬁEBW;L - /BEBV\B == 6aH

(B.5)

" " _1\2
,BEsz - IBEBV\A == (C 1)

= e+ D (8.6)

According to (B.5) and (B.6), we have
BEBWl_ﬁEB% >O’ BEBV\E_ﬁ EBW> 0

That IS ﬁAEBW3 < BEBV\A < ﬁEB\M

(ii) Based on (B.3) and (B.4), we have

Thatislim B, =lim B, =lim B,
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Proof of Theorem 15.

(i) From (55), (56) and (57), we can obtain

- ~  __c-1
IBEBEL IBEBEB - 6aH

5 _p oo (c-1p
ﬁEBEz IBEBEL - 6aH (C+1)

According to (B.7) and (B.8), we have
Beoe: = Beoe >0, Beow = Bewa> 0
Thatis B..., < Beos < Beos
(i) Based on (B.3) and (B.4), we have
Thatislim B = lim Bees =lim Beoe
Proof of Theorem 16.

(i) From (59), (60) and (61), we can obtain

S . c-1

IBEBMl _IBEBM3 :Zm

BB ==
EBM 2 EBM1 GHH (C+1)

According to (B.9) and (B.10), we have
IBEBM1 - IBEBME >0, IBEBMZ - IBEBM1 >0

That IS ﬂEBM3 < ﬂEBMl < ﬁEBMZ

(i) Based on (B.3) and (B.4), we have

That IS !—!m ﬂEBMl = ||_I1m ﬁEBMZ :I'!'m ﬁEBMC&‘

(B.7)

(B.8)

(B.9)

(B.10)
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