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Abstract 
 
This paper presents the study of convective heat and mass transfer characteristics of an incompressible MHD vis-
co-elastic fluid flow immersed in a porous medium over a stretching sheet with chemical reaction and thermal 
stratification effects. The resultant governing boundary layer equations are highly non-linear and coupled form of 
partial differential equations, and they have been solved by using fourth order Runge-Kutta integration scheme 
with Newton Raphson shooting method. Numerical computations are carried out for the non-dimensional physical 
parameters. Here a numerical has been carried out to study the effect of different physical parameters such as vis-
co-elasticity, permeability of the porous medium, magnetic field, Grashof number, Schmidt number, heat source 
parameter and chemical reaction parameter on the flow, heat and mass transfer characteristics. 
 
Keywords: Heat and Mass Transfer, Incompressible MHD, Visco-Elastic, Porous Medium, Chemical  

Reaction 

1. Introduction 
 
In recent years, a great deal of interest has been generat-
ed in the area of heat and mass transfer of the boundary 
layer flow over a stretching sheet, in view of its numer-
ous and wide-ranging applications in various fields like 
polymer processing industry in particular in manufactur-
ing process of artificial film and artificial fibers and in 
some applications of dilute polymer solution. Sakiadis 
[1,2] was the first study of boundary layer problem as-
suming velocity of a boundary sheet as constant. This 
work is followed by the pioneering work of Tsou et al. [3] 
studied the flow and heat transfer developed by conti-
nuously moving surface both analytically and experi-
mentally, in which the flow is caused by an elastic sheet 
moving in its own plane with a velocity varying linearly 
with the distance from a fixed point studied by Crane [4]. 
Chakrabarti and Gupta [5] studied the temperature dis-
tribution in this MHD boundary layer flow over a stret-
ching sheet in the presence of suction. There are several 

extensions to this problem, which include consideration 
of more general stretching velocity and the study of heat 
transfer [6-14]. 

In view of increasing importance of non-Newtonian 
flows, a great deal of work has been carried out to find 
the similarity solution of viscoelastic fluid flow over im- 
pervious stretching boundary. Rajagopal et al. [15] ex- 
amined for a special class of visco-elastic fluids known 
as second order fluids. Siddappa et al. [16] studied the 
flow of visoelastic fluids of the type Walter’s liquid B 
past a stretching sheet. Abel and Veena [17] studied the 
viscoelasticity on the flow and heat transfer in a porous 
medium over a stretching sheet. All these studies deals 
with the studies concerning non-Newtonian flows and 
heat transfer in the absence of magnetic fields, but pre- 
sent years we find several industrial applications such as 
polymer technology and metallurgy [18], where the mag- 
netic field is applied in the visco-elastic fluid flow. Sar-
pakaya [19] was mostly first researcher to investigate 
MHD flows of non-Newtonian fluids, Andersson [20] 
investigated the flow problem of electrically conducting 
viscoelastic fluid past a flat and impermeable elastic 
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sheet and later his work is extended by many authors 
[21-25]. 

Chemical reactions usually accompany a large amount 
of exothermic and endothermic reactions. These charac-
teristics can be easily seen in a lot of industrial processes. 
Recently, it has been realized that it is not always per-
missible to neglect the convection effects in porous con-
structed chemical reactors [26]. The reaction produced in 
a porous medium was extraordinarily in common, such 
as the topic of PEM fuel cells modules and the polluted 
underground water because of discharging the toxic sub-
stance, etc. 

Fourier’s law, for instance, described the relation be-
tween energy flux and temperature gradient. In other 
aspects, Fick’s law was determined by the correlation of 
mass flux and concentration gradient. Moreover, it was 
found that energy flux can also be generated by compo-
sition gradients, pressure gradients, or body forces. The 
energy flux caused by a composition gradient was dis-
covered in 1873 by Dufour and was correspondingly 
referred to the Dufour effect. It was also called the diffu-
sion-thermo effect. On the other hand, mass flux can also 
be created by a temperature gradient, as was established 
by Soret. This is the thermal-diffusion effect. In general, 
the thermal-diffusion and the diffusion-thermo effects 
were of a smaller order of magnitude than the effects 
described by Fourier’s or Fick’s law and were often neg-
lected in heat and mass transfer processes. There were 
still some exceptional conditions. The thermal-diffusion 
effect has been utilized for isotope separation and in 
mixtures between gases with very light molecular weight 
(H2, He) and of medium molecular weight (N2, air), the 
diffusion-thermo effect was found to be of a magnitude 
such that it may not be neglected in certain conditions 
[27]. In recent years, Kandasamy et al. studied the heat 
and mass transfer under a chemical reaction with a heat 
source [28,29]. Seddeek studied the thermal radiation 
and buoyancy effect on MHD free convection heat gen-
eration flow over an accelerating permeable surface with 
the influence temperature dependent viscosity [30], and 
later the chemical reaction, variable viscosity, radiation, 
variable suction on hydromagnetic convection flow 
problems were included [31-33].  

Although there are numerous widely practical applica-
tions in industrial processes, few previous published pa-
pers discussed the combined relation. In the present pa-
per, we make an attempt to investigate the problem of 
convective heat and mass transfer of incompressible 
MHD visco-elastic fluid embedded in a porous medium 
over a stretching sheet under a chemical reaction. The 
presence of combined buoyancy effects leads to the mo-
mentum, heat and mass transfer equations in the coupled 
form of highly non-linear partial differential equations. 
To deal with the coupling and non-linearity, a numerical 

shooting technique for three unknown initial conditions 
with Runge-Kutta fourth order integration scheme has 
been developed. The results are analyzed for various 
physical parameters such as visco-elasticity, permeability 
of the porous medium, magnetic field, Grashof number, 
Schmidt number, Prandtl number, heat source parameter 
and chemical reaction parameter on the flow, heat and 
mass transfer characteristics.  
 
2. Mathematical Formulation 
 
We consider a free convective, laminar boundary layer 
flow and heat and mass transfer of viscous incompressi-
ble and electrically conducting visco-elastic liquid due to 
a stretching sheet. The sheet lies in the plane 0y   
with the flow being confined to 0y  . The coordinate 
x  is being taken along the stretching sheet and y  is 
normal to the surfaced, two equal and opposite forces are 
applied along the x-axis, so that the sheet is stretched, 
keeping the origin fixed. A uniform transverse magnetic 
field of strength 0B  is applied parallel to the y -axis 
and the chemical reaction is taking place in the flow. The 
viscous dissipation effect and Joule heat are neglected on 
account of the fluid is finitely conducting. It is assumed 
that the induced magnetic field, the external electric field 
and the electric field due to the polarization of charges 
are negligible. The density variation and the effects of 
the buoyancy are taken into account in the momentum 
equa- tion (Boussinesq’s approximation) and the concen-
tration of species far from the wall is infinitesimally 
small and the viscous dissipation term in the energy equ-
ation is neglected (as the fluid velocity is very low). Un-
der these assumptions, the governing boundary layer 
equations of momentum, energy and diffusion under 
Boussinesq approximations could be written as follows: 
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where u,υ  are velocity components, T  and C  are, 
respectively, the temperature and concentration of che- 
mical species in the fluid,   is the kinematic viscosity, 

0k is the non-Newtonian visco-elastic parameter, ε is 
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the permeability coefficient of porous medium, g is the 
acceleration due to gravity,   is the volumetric coeffi-
cient of thermal expansion, *  is the volumetric con-
centration coefficient, 0B  is the magnetic induction, 
 is the fluid density,  is the fluid electrical conduc-
tivity, k is the thermal conductivity, pC  is the specific 
heat at constant pressure, Q is the dimensional heat 
generation/absorption coefficient, D is the mass diffu-
sivity and 1K  is the chemical reaction parameter. 

The boundary conditions governing the flow are: 

   0, , 0, Α ,

, , , ,

w w

y
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(5) 

To take into account the effect of stretching of the 
boundary sheet, and the effects due to temperature and 
concentration gradients, we prescribe the wall boundary 
conditions in the form of (5). In order to study the heat 
transfer analysis we consider two general cases of non- 
isothermal temperature boundary conditions, namely 
boundary with prescribed power law surface temperature. 
The subscript y  denotes the differentiation w.r.t. y . 
Now, we introduce the following dimensionless va-
riables: 
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where 
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With these changes of variables Equation (1) is iden-
tically satisfied and Equations (2)-(4) are transformed to 
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The corresponding boundary conditions take the form: 

'

'

0, 0, 1, 1, 1

, ' 0, ' 0, 0, 0

f f

f f

  
  

    
    

      (11) 

where subscript ' denotes the differentiation with respect 
to  . 1 2,k k  are the viscoelastic and porosity parame-
ters, Gr  and Gc  are the free convection parameters, 
M  magnetic field parameter,   is the heat generation 
or absorption coefficient,   is the Chemical reaction 
parameter, and Pr , Sc  denote Prandtl number and 

Schmidt number respectively. These dimensionless phy- 
sical parameters are defined as: 
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(12) 
where expressions for  wT T   and  wC C   
are given in Equation (6). The important physical quanti-
ties of our interest are the local skin friction w , Nusselt 
number Nu and Sherwood number Sh  and they are 
defined in the sequel: 
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3. Numerical Solution 
 
Equations (8)-(10) constitute a highly non-linear coupled 
boundary value problem of fourth and second order. So 
we develop most effective numerical shooting technique 
with fourth-order Runge-Kutta integration scheme with 
Newton Raphson method. To select  we begin with 
some initial guess value and solve the problem with 
some particular set of parameters to obtain ''(0),f  

'(0)  and  ' 0 . The solution process is repeated with 
another larger value of   until two successive values 
of ''(0),f  '(0)  and  ' 0  differ only after desired 
digit signifying the limit of the boundary along  . The 
last value of   is chosen as appropriate value for that 
particular set of parameters. 

Equations (8)-(10) of fourth order in f  and second 
order in    and    has been reduced to a system of 
eight simultaneous equations of first order for eight un-
knowns following the method of superposition [34]. To 
solve this system we require eight initial conditions 
whilst we have only two initial conditions '(0)f  and 

(0)f  on f , two initial conditions on each on   and 
 . The third initial condition on '''(0)f  has been de-
duced by applying initial conditions of (11) in Equation 
(8). Still there are three initial conditions ''(0)f , '(0)  
and '(0)  which are not prescribed. Now, we employ 
numerical shooting technique where these two ending 
boundary conditions are utilized to produce two known 
initial conditions at 0  . In this calculation, the step 
size Δ 0.001   is used while obtaining the numerical 
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solution with max 7   and five-decimal accuracy as 
the criterion for convergence. 
 
4. Results and Discussion 
 
The numerical computations have been carried out for 
various values of visco-elastic parameter 1k , porosity 
parameter 2k , Grashof number Gr , modified Grashof 
number Gc , Prandtl number Pr  and Schmidt number 
Sc using numerical scheme discussed in the previous 
section. In order to illustrate the results graphically, the 
numerical values are plotted in Figures 1-18. These fig-
ures depict the horizontal velocity, temperature and con-
centration profiles for power law surface temperature. 
Values of local skin friction w , Nusselt number Nu  
and Sherwood number Sh  are recorded in Table 1-3 for 
various values of 1k visco-elastic, 2k porosity para-
meter, Gr , Gc  free convection parameters, M  mag- 
netic field parameter,   heat generation or absorption 
coefficient,  Chemical reaction parameter, Pr  Prandtl 
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Figure 1. Effect of k2 on the velocity f׳(η) profiles for k1 = 
0.1 , M = Gr = Gc = 0.5, Pr = 1, Sc = 0.96, δ = –0.5 and γ = 
0.5. 
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Figure 2. Effect of k2 on the temperature θ(η) profiles for k1 

= 0.1, M = Gr = Gc = 0.5, Pr = 1, Sc = 0.96, δ= –0.5 and γ = 
0.5. 
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Figure 3. Effect of k2 on the concentration φ(η) profiles for k1 

= 0.1, M = Gr = Gc = 0.5, Pr = 1, Sc = 0.96 δ = –0.5 and γ = 
0.5. 
 
number and Sc Schmidt number. 

Figures 1-3 display results for the velocity, tempera 
ture and concentration distributions. As shown, the tem-
perature and concentration are increasing with increa-
singthe dimensionless porous medium parameter 2k and 
the velocity decreases as 2k increases. The effect of the 
dimensionless porous medium parameter 2k becomes 
smaller as 2k  increases. 

Figures 4-6 illustrate the influence of the magnetic 
parameter M  on the velocity, temperature and concen-
tration profiles in the boundary layer, respectively. Ap-
plication of a transverse magnetic field to an electrically 
conducting fluid gives rise to a resistive-type force called 
the Lorentz force. This force has the tendency to slow 
down the motion of the fluid in the boundary layer and to 
increase its temperature and concentration. Also, the ef-
fects on the flow and thermal fields become more so as 
the strength of the magnetic field increases.  

Figures 7-12 show the effects of Grashof number Gr  
and modified Grashof number Gc  on the velocity, tem- 
perature and concentration respectively. As shown, the 
 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6

M=0.0

M=0.5

M=1

 
Figure 4. Effect of M on the velocity f׳(η) profiles for k1 = 0, 
k2 = 1, Gr = Gc =0.5, Pr = 1, Sc = 0.96, δ= –0.5 and γ = 0.5. 
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Figure 5. Effect of M on the temperature θ(η) profiles for k1 

= 0.1, k2 = 1, Gr = Gc = 0.5, Pr = 1, Sc = 0.96, δ = –0.5 and γ 
= 0.5. 
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Figure 6. Effect of Mon the concentration φ(η) profiles for 
k1 = 0.1, k2 = 1, Gr = Gc = 0.5, Pr = 1, Sc = 0.96, δ = –0.5, and 
γ = 0.5. 
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Figure 7. effect of Gr on the velocity f׳(η) profiles for k1 = 
0.1, k2 = 1, M = Gc = 0.5, Pr = 1, Sc =0.96, δ = –0.5 and γ = 
0.5. 
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Figure 8. Effect of Gr on the temperature θ(η) profiles for 
k1 = 0.1, k2 = 1, M = Gc = 0.5, Pr= 1, Sc = 0.96, δ = –0.5 and γ 
= 0.5. 
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Figure 9. Effect of Gr on the concentration φ(η) profiles for k1 

= 0.1, k2 = 1, M = Gc = 0.5, Pr = 1, Sc = 0.96, δ = –0.5 and γ = 
0.5. 
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Figure 10. Effect of Gc on the velocity f׳(η) profiles for k1 = 
0.1, k2 = 1, M = Gr = 0.5, Pr = 1, Sc = 0.96, δ = –0.5 and γ = 
0.5. 
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Figure 11. effect of Gc on the temperature θ(η) profiles fvor k1 

= 0.1, k2 = 1, M = Gr = 0.5, Pr = 1, Sc = 0.96, δ = –0.5 and γ = 
0.5. 
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Figure 12. Effect of Gc on the concentration φ(η) profiles 
for k1 = 0.1, k2 =1, M = Gr = 0.5, Pr = 1, Sc = 0.96, δ = –0.5 
and γ = 0.5. 
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Figure 13. Effect of δ on the velocity f׳(η) profiles for k1 = 
0.1, k2 = 1, M = Gr = Gc = 0.5, Pr = 1, Sc = 0.96 and γ = 0.5. 

means cooling of the fluid or heating of the boundary sur- 
face and Gr = 0 corresponds to the absence of free con- 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10

δ=-1
δ=-0.5
δ=0.0
δ=0.3

 
Figure 14. Effect of δ on the temperature θ(η) profiles for 
k1 = 0.1, k2 = 1, M = Gr = Gc = 0.5, Pr = 1, Sc = 0.96 and γ = 
0.5. 
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Figure 15. Effect of δ on the concentration φ(η) profiles for 
k1 = 0.1, k2 = 1, M = Gr = Gc = 0.5, Pr = 1, Sc = 0.96 and γ = 
0.5. 

vection current. 
Figures 13-15 present typical profiles for the velocity, 

temperature and concentration for various values of a 
heat source ( 0  ) or a heat sink ( 0  ), respectively. 
As shown, the velocity and the temperature are increas-
ing with increasing  , but the concentration decreases 
as   increases. In the event that the strength of the heat 
sink ( 0  ) is relatively large, the maximum fluid tem-
perature does not occur at the wall but rather in the fluid 
region close to it. Conversely, the presence of a heat 
source ( 0  ) effect causes a reduction in the thermal 
state of the fluid, thus producing lower thermal boundary 
layers. 

Figures 16-18 illustrate the influence of the Chemical 
reaction parameter   on the velocity, temperature and 
concentration profiles in the boundary layer, respectively. 
As shown, the velocity and the concentration are decr- 
easing with increasing  , but the temperature increases  

Gc = －0.5
Gc = 0.5 
Gc = 2 

Gc = －0.5
Gc = 0.5
Gc = 2 

δ = －1 
δ = －0.5
δ = 0.0 
δ = 0.3 

δ = －1 
δ = －0.5 
δ = 0.0 

δ = 0.3 

δ = 1 
δ = －0.5 
δ = 0.0 
δ = 0.3 



S. M. ALHARBI  ET  AL. 
 

Copyright © 2010 SciRes.                                                                                 AM 

452 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8

γ=-0.2
γ=0.0
γ=0.5
γ=1

 
Figure 16. Effect of γ on the velocity f׳(η) profiles for k1 = 
0.1, k2 = 1, M = Gr = Gc = 0.5, Pr = 1, Sc = 0.96 and δ = –0.5. 
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Figure 17. Effect of γ on the temperature θ(η) profiles for k1 = 
0.1,k2 = 1, M = Gr = Gc = 0.5, Pr = 1, Sc = 0.96 and δ = –0.5. 
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Figure 18. Effect of γ on the concentration φ(η) profiles for 
k1 = 0.1, k2 = 1, M = Gr = Gc = 0.5, Pr = 1,Sc = 0.96 and δ = 
–0.5. 
 
as   increases, this is due to the fact that destructive 
chemical reduces the solutal boundary layer thickness 
and increases the mass transfer. 

Tables 1-3 represents values of w , Nu and Sh  for 
various values of 1, , , , , Pr, ,M Gr Gc Sc k  and 2k . It 
is clear that, with increasing Gr  and Gc , ,Nu  Sh  
and w increases, whereas with increasing 1 ,k  2k and 
M , ,Nu Shand w decreases. Also, w and Sh  increase 
as Sc  and  increases and Nu  decrease, whereas, 
Nu and w decreases and Sh  increase as   increases, 
Also, Sh  and w  increases and Nu decrease as Pr in-
crease. 

Table 1. The effect of parameter on (0).f   

(0)f   

k1 = 0.3 k1 = 0.2 k1 = 0.1 k2 M Gr Gc Pr δ Sc γ
–0.9233 –0.8908 –0.8626 0.0 0.5 0.5 0.5 1.0 –0.5 0.96 0.5
–1.1978 –1.1344 –1.0838 0.5 0.5 0.5 0.5 1.0 –0.5 0.96 0.5
–1.4345 –1.3476 –1.2791 1.0 0.5 0.5 0.5 1.0 –0.5 0.96 0.5
–1.1978 –1.1344 –1.0838 1.0 0.0 0.5 0.5 1.0 –0.5 0.96 0.5
–1.4345 –1.3476 –1.2791 1.0 0.5 0.5 0.5 1.0 –0.5 0.96 0.5
–1.6446 –1.5387 –1.4552 1.0 1.0 0.5 0.5 1.0 –0.5 0.96 0.5
–1.6639 –1.556 –1.4692 1.0 0.5 0.0 0.5 1.0 –0.5 0.96 0.5
–1.4345 –1.3476 –1.2791 1.0 0.5 0.5 0.5 1.0 –0.5 0.96 0.5
–1.1994 –1.1400 –1.0929 1.0 0.5 1.0 0.5 1.0 –0.5 0.96 0.5
–1.8913 –1.7696 –1.6688 1.0 0.5 0.5 –0.5 1.0 –0.5 0.96 0.5
–1.6654 –1.5578 –1.4712 1.0 0.5 0.5 0.0 1.0 –0.5 0.96 0.5
–1.4345 –1.3476 –1.2791 1.0 0.5 0.5 0.5 1.0 –0.5 0.96 0.5
–1.4345 –1.3476 –1.2791 1.0 0.5 0.5 0.5 1.0 –0.5 0.96 0.5
–1.4622 –1.379 –1.3120 1.0 0.5 0.5 0.5 2.0 –0.5 0.96 0.5
–1.5010 –1.4201 –1.3531 1.0 0.5 0.5 0.5 5.5 –0.5 0.96 0.5
–1.4457 –1.3602 –1.2922 1.0 0.5 0.5 0.5 1.0 –1.0 0.96 0.5
–1.4345 –1.3476 –1.2791 1.0 0.5 0.5 0.5 1.0 –0.5 0.96 0.5
–1.4165 –1.3268 –1.2571 1.0 0.5 0.5 0.5 1.0 0.0 0.96 0.5
–1.4034 –1.3110 –1.2402 1.0 0.5 0.5 0.5 1.0 0.2 0.96 0.5
–1.4345 –1.3476 –1.2791 1.0 0.5 0.5 0.5 1.0 –0.5 0.96 0.5
–1.4637 –1.3808 –1.3140 1.0 0.5 0.5 0.5 1.0 –0.5 2.0 0.5
–1.5025 –1.4219 –1.3551 1.0 0.5 0.5 0.5 1.0 –0.5 5.0 0.5
–1.4032 –1.3106 –1.2397 1.0 0.5 0.5 0.5 1.0 –0.5 0.96 –0.2
–1.4164 –1.3267 –1.2569 1.0 0.5 0.5 0.5 1.0 –0.5 0.96 0.0
–1.4345 –1.3476 –1.2791 1.0 0.5 0.5 0.5 1.0 –0.5 0.96 0.5
–1.4457 –1.3603 –1.2923 1.0 0.5 0.5 0.5 1.0 –0.5 0.96 1.0
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Table 2. The effect of parameter on (0).   

(0)   

k1 = 0.3 k1 = 0.2 k1 = 0.1 k2 M Gr Gc Pr δ Sc γ
1.2609 1.2663 1.2711 0.0 0.5 0.5 0.5 1.0 –0.5 0.96 0.5
1.2282 1.2360 1.2425 0.5 0.5 0.5 0.5 1.0 –0.5 0.96 0.5 
1.2013 1.2106 1.2184 1.0 0.5 0.5 0.5 1.0 –0.5 0.96 0.5 
1.2282 1.2360 1.2425 1.0 0.0 0.5 0.5 1.0 –0.5 0.96 0.5
1.2013 1.2106 1.2184 1.0 0.5 0.5 0.5 1.0 –0.5 0.96 0.5 
1.1785 1.1889 1.1976 1.0 1.0 0.5 0.5 1.0 –0.5 0.96 0.5 
1.1724 1.1841 1.1941 1.0 0.5 0.0 0.5 1.0 –0.5 0.96 0.5
1.2013 1.2106 1.2184 1.0 0.5 0.5 0.5 1.0 –0.5 0.96 0.5 
1.2278 1.2346 1.2404 1.0 0.5 1.0 0.5 1.0 –0.5 0.96 0.5 
1.1390 1.1529 1.1650 1.0 0.5 0.5 –0.5 1.0 –0.5 0.96 0.5
1.1719 1.1835 1.1935 1.0 0.5 0.5 0.0 1.0 –0.5 0.96 0.5 
1.2013 1.2106 1.2184 1.0 0.5 0.5 0.5 1.0 –0.5 0.96 0.5 
1.2013 1.2106 1.2184 1.0 0.5 0.5 0.5 1.0 –0.5 0.96 0.5
1.7734 1.7849 1.7946 1.0 0.5 0.5 0.5 2.0 –0.5 0.96 0.5 
2.9327 2.9463 2.9578 1.0 0.5 0.5 0.5 5.5 –0.5 0.96 0.5 
1.4134 1.4207 1.4268 1.0 0.5 0.5 0.5 1.0 –1.0 0.96 0.5
1.2013 1.2106 1.2184 1.0 0.5 0.5 0.5 1.0 –0.5 0.96 0.5 
0.9181 0.9321 0.9442 1.0 0.5 0.5 0.5 1.0 0.0 0.96 0.5 
0.7494 0.7656 0.7827 1.0 0.5 0.5 0.5 1.0 0.2 0.96 0.5 
1.2013 1.2106 1.2184 1.0 0.5 0.5 0.5 1.0 –0.5 0.96 0.5
1.1922 1.2016 1.2097 1.0 0.5 0.5 0.5 1.0 –0.5 2.0 0.5 
1.1836 1.1934 1.2020 1.0 0.5 0.5 0.5 1.0 –0.5 5.0 0.5 
1.2141 1.2232 1.2305 1.0 0.5 0.5 0.5 1.0 –0.5 0.96 –0.2
1.2083 1.2174 1.2249 1.0 0.5 0.5 0.5 1.0 –0.5 0.96 0.0 
1.2013 1.2106 1.2184 1.0 0.5 0.5 0.5 1.0 –0.5 0.96 0.5 
1.1975 1.2069 1.2149 1.0 0.5 0.5 0.5 1.0 –0.5 0.96 1.0 

 
Table 3. The effect of parameter on (0).  

(0)   

k1 = 0.3 k1 = 0.2 k1 = 0.1 k2 M Gr Gc Pr δ Sc γ
1.2322 1.2375 1.2423 0.0 0.5 0.5 0.5 1.0 –0.5 0.96 0.5
1.1999 1.2075 1.2140 0.5 0.5 0.5 0.5 1.0 –0.5 0.96 0.5 
1.1733 1.1824 1.1902 1.0 0.5 0.5 0.5 1.0 –0.5 0.96 0.5 
1.1999 1.2075 1.2140 1.0 0.0 0.5 0.5 1.0 –0.5 0.96 0.5
1.1733 1.1824 1.1902 1.0 0.5 0.5 0.5 1.0 –0.5 0.96 0.5 
1.1508 1.1610 1.1697 1.0 1.0 0.5 0.5 1.0 –0.5 0.96 0.5 
1.1448 1.1563 1.1661 1.0 0.5 0.0 0.5 1.0 –0.5 0.96 0.5
1.1733 1.1824 1.1902 1.0 0.5 0.5 0.5 1.0 –0.5 0.96 0.5 
1.1994 1.2062 1.2119 1.0 0.5 1.0 0.5 1.0 –0.5 0.96 0.5 
1.1118 1.1255 1.1374 1.0 0.5 0.5 -0.5 1.0 –0.5 0.96 0.5
1.1442 1.1557 1.1655 1.0 0.5 0.5 0.0 1.0 –0.5 0.96 0.5 
1.1733 1.1824 1.1902 1.0 0.5 0.5 0.5 1.0 –0.5 0.96 0.5 
1.1733 1.1824 1.1902 1.0 0.5 0.5 0.5 1.0 –0.5 0.96 0.5
1.1648 1.1741 1.1821 1.0 0.5 0.5 0.5 2.0 –0.5 0.96 0.5 
1.1563 1.1660 1.1744 1.0 0.5 0.5 0.5 5.5 –0.5 0.96 0.5 
1.1696 1.1789 1.1868 1.0 0.5 0.5 0.5 1.0 –1.0 0.96 0.5
1.1733 1.1824 1.1902 1.0 0.5 0.5 0.5 1.0 –0.5 0.96 0.5 
1.1801 1.1891 1.1965 1.0 0.5 0.5 0.5 1.0 0.0 0.96 0.5 
1.1858 1.1948 1.2020 1.0 0.5 0.5 0.5 1.0 0.2 0.96 0.5 
1.1733 1.1824 1.1902 1.0 0.5 0.5 0.5 1.0 –0.5 0.96 0.5
1.7729 1.7844 1.7940 1.0 0.5 0.5 0.5 1.0 –0.5 2.0 0.5 
2.9322 2.9458 2.9573 1.0 0.5 0.5 0.5 1.0 –0.5 5.0 0.5 
0.7266 0.7420 0.7589 1.0 0.5 0.5 0.5 1.0 –0.5 0.96 –0.2
0.8935 0.9074 0.9194 1.0 0.5 0.5 0.5 1.0 –0.5 0.96 0.0 
1.1733 1.1824 1.1902 1.0 0.5 0.5 0.5 1.0 –0.5 0.96 0.5 
1.3820 1.3891 1.3952 1.0 0.5 0.5 0.5 1.0 –0.5 0.96 1.0 

 
5. Conclusions 
 
In this study, a numerical analysis is presented to inves-
tigate the influence of chemical reaction of first-order 
and magnetic field on the heat and mass transfer of an 

electrically conducting viscoelastic fluid flow through a 
porous medium over a stretching sheet. The non-linear 
and coupled governing equations are solved numerical 
by using fourth order Runge-Kutta integration scheme-
with Newton Raphson shooting method. Velocity, tem- 
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perature and concentration profiles are presented graphi-
cally and analyzed. The fundamental parameters found to 
effect the problem under consideration are the chemical 
reaction parameter, magnetic field parameter, viscoelas-
tic parameter, porosity parameter, Grashof number, mo- 
dified Grashof number, Prandtl number, Schmidt number 
and heat absorption parameter. It is found that, the tem-
perature as well as concentration increases with increas-
ing the visco-elastic parameter, porosity parameter and 
magnetic parameter whereas reverse trend is seen with 
Grashof number and modified Grashof number increas-
ing. Additionally, the velocity temperature is increased in 
the presence of heat absorption parameters and decreased 
with chemical reaction. 
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Nomenclature 

,A B  constants T temperature of the ambient fluid 

b  stretching rate, positive constant wT  surface temperature 

0B  magnetic induction ,u  velocity components along x and y direction 

pC  specific heat at constant pressure x  coordinate along the stretching sheet 

D  mass diffusivity y distance normal to the stretching sheet 

f  dimensionless stream function Greek symbols 

Gr  temperature Grashof of number   dimensionless temperature function 

Gc  mass Grashof of number   dimensionless concentration function 

g  acceleration due to gravity  dimensionless space variable 

1K  first order chemical reaction rate   kinematic viscosity 

k  thermal conductivity   fluid density 

0k  non-Newtonian visco-elastic parameter   electrical conductivity 

1k  visco-elastic parameter   coefficient of viscosity 

2k  porosity parameter   coefficient of thermal expansion 

l  characteristic length * volumetric concentration coefficient 

M  magnetic field parameter   heat generation or absorption coefficient 

Nu  Nusselt number w  skin friction 

Pr  Prandtl number   permeability coefficient of porous medium 

Q  dimensional heat generation/absorption coefficient   Chemical reaction parameter 

Sc  Schmidt number Subscripts 

Sh  Sherwood number w  properties at the plate 

T  temperature of the fluid   free stream condition 

 


