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ABSTRACT 
 
Physical analysis of the magnetoplasmadynamic thrusters, especially ones with self induced 
magnetic field, demonstrates the interaction of applied electric and induced magnetic field to affect 
the flow field and accelerate it to reach the higher specific impulses. Such interaction besides 
changing the fluid state to the plasma, acts as momentum and energy source terms which should be 
predicted carefully. The former method which has been frequently used to compute the induced 
magnetic field is analyzed here and is shown that despite of its mathematical validity of the 
governing equation, it is disable to compute the induced magnetic field due to the problems in 
boundary condition. Therefore the accurate method is suggested here which shows much better 
abilities to study the induced magnetic field and can be utilized in performance analysis and 
numerical simulation of MPDTs. 
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NOMENCLATURE 

 
�     = computational cell area 

��⃗  = magnetic flux density vector 

��⃗  = electric field intensity vector 
� = electric current 

�⃗ = electric current density vector 

��⃗  = displacement vector 
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��⃗  = velocity vector 
� = axial component of velocity 
� = electric potential 
� = radial component of velocity 
� = axial coordinate 
� = radial coordinate 
� = magnetic permeability 
� = electric conductivity 
� = angular coordinate 
 

1. INTRODUCTION 
 
Nearly all space propulsion requirements are 
satisfied by chemical propulsion systems, which 
are limited in performance by the stored energy 
within the propellants. One way to overcome this 
limitation is to increase a working gas exit 
velocity through additional energy supplied from 
external sources, like what happened in electric 
propulsion devices.  
 
Basic electric propulsion systems use an electric 
power to transmit additional thermal energy to 
the flow field and increase the exhaust velocity. 
More advanced electric propulsion systems heat 
the propellant to an ionized state and then 
accelerate the produced plasma through 
electromagnetic forces. The low thrust generated 
by these magnetoplasmadynamic thrusters 
(MPDT) restricts their usage, but their simplicity 
of design and theoretical efficiency at high power 
levels make them ideal candidate as the primary 
propulsion sources for deep space missions such 
as satellite station-keeping and orbit rising. They 
can offer specific impulses that are orders of 
magnitude higher than chemical rockets.  
 
The MPDT operates with applied or self-induced 
magnetic fields. In the self-induced configuration, 
the electric current ionizes the injected propellant 
through Joule heating and this current also 
induces a perpendicular (azimuthal) magnetic 
field which accelerates the plasma by the Lorentz 
force.  
 
The ideas of electric propulsion devices go back 
to the 1920s, but first seriously studied in the 
1950s and have 45 years operational history in 
different space programs. There are some 
experimental and numerical studies have been 
specifically done on self-field MPDTs, too. These 
studies can be categorized according to the 
assumed simplifying models, adopted numerical 
schemes, or based on technological viewpoints.  
 
Some flow field assumptions are as: single fluid 
or multi fluid, isothermal or multi temperature, 

fully ionizes or partially ionized, viscous or free 
friction and with Hall Effect or not. Flow field 
analysis and simulation [1-18]; thrust, electric 
power and specific impulse estimation [19-27]; 
instability analysis [28-32]; geometry and 
propellant type effects [33-42] and electrode’s 
erosion calculation [43-45] have been the main 
purpose of these studies. However it should be 
emphasized that this categorization is not very 
accurate and some overlaps exist.  
 
In self-field MPDTs, the magnetic field is induced 
due to the applied electric field. Afterward, the 
interaction of this magnetic field and electric 
current play an important role on plasma 
acceleration due to the Lorentz force, as 
mentioned before. Therefore, an accurate 
calculation of the induced magnetic field in these 
thrusters is one of the basic foundations for 
precise simulation of MPDTs and their 
performance prediction. Although most studies in 
this area have been done numerically, some 
shortcomings can be found in magnetic field 
computation.  
 
In the present study, after analysis of such 
shortcomings in common method, an accurate 
scheme to calculate the induced magnetic field is 
suggested. Using this procedure will be useful to 
improve the numerical simulation of self-field 
magnetoplasmadynamic thrusters. 
 

2. GOVERNING EQUATIONS AND 
ANALYSIS  

 

The complete set of governing equations for 
quasi steady, fully ionized, isothermal and single 
fluid flow field in MPDTs accompanies by the 
Navier-Stokes equations are the Maxwell’s 
equations as presented here.  
 
Faraday’s law: 
 

� × ��⃗ = 0  (1) 

 
Ohm’s law: 
 

�⃗ = ����⃗ + ��⃗ × ��⃗ �  (2) 

 
Ampere’s law: 
 

� × ��⃗ = ��⃗  (3) 

 
And 
 

�. �⃗ = 0 (4) 
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Due to the Ohm’s law which contains the velocity 
vector term, the flow field and electromagnetic 
governing equations are coupled. Moreover, the 
electromagnetic field affects substantially the 
flow field due to the applied momentum and 
energy sources: 
 
Lorentz force (momentum source): 
 

�⃗ × ��⃗  (5) 

 
Joule heating (energy source): 
 

�⃗. ��⃗  (6) 

 
Therefore the set of all equations should be 
solved to find the electric field, magnetic field, 
electric current and flow field properties such as 
velocity vector and temperature. The magnetic 
field appears in the both Ohm’s law and Lorentz 
force and affects the electric current density as 
well as fluid acceleration. Additionally, it is 
induced due to the electric current in conducting 
media (plasma). The question is how to calculate 
this magnetic field.  
 
Nearly all studies have been already done use 
the similar procedure which is presented here. In 
an axisymmetric thruster, only angular magnetic 
field exists. In addition, the electric field and 
electric current just has radial and axial 
components. So the Maxwell’s equations are: 
 

���

��
−

���

��
= 0 (7) 

  
�� = �(�� + ���)   (8) 
  

�� = ���� − ����   (9) 

  
���

��
+

��

�
= ��� (10) 

  

−
���

��
= ��� (11) 

 
Combining these equations and omitting the 
electric field as well as electric current yields the 
below equation which shows the balance 
between convection and diffusion of angular 
component of magnetic field.  
 

�
�(���)

��
+

�(���)

��
� −  (12) 

�
1

��
� �

����

���
+

����

���
+

1

�

���

��
−

��

��
�

= 0 
 
This equation is quite true from mathematical 
viewpoint, but from physical viewpoint, it works 
well if appropriate boundary conditions are 
applied. This is exactly the origin of the 
imperfection of previous studies. They have used 
the boundary condition at inlet of thruster as 
below, without reasonable explanation [for 
example 12,13,16]. 
 

�� =
��

2��
 (13) 

 
This seems to be a common mistake. It is helpful 
to check the origin of this equation. They have 
only referred it to the Ampere’s law. It is like a 
magnetic field distribution around a current-
carrying wire.  

 
Using the Ampere’s law for axisymmetric 
geometry (equations 10,11) and assuming just 
axial electric current results to the remaining 
equation: 
 

1

�

�(���)

��
= ��� (14) 

 
Therefore, it can be integrated as: 
 

�� =
�

�
� �����

�

�

 (15) 

 
Then, assuming a constant axial electric current 
density, it yields: 
 

�� =
�����

2�
 (16) 

 
Which is as exactly the same as equation          

13 considering �� = �/(���)  here. The 
assumptions which are used to derive this 
relation aren’t applicable in MPDTs, because 
there is indeed radial and variable electric current 
density (see Fig. 1) instead of assumed axial and 
constant electric current density which is used to 
derive eq. (16). Therefore, using eq. (13) as a 
boundary condition for equation 12 yields a 
wrong distribution of induced magnetic flux 
density.  
 



 
Fig. 1. Electric current lines in typical MPDT

 
In addition, using equation 12 with applying eq. 
(13) as a boundary condition instead of applying 
correct B. C. only yields a variation of induced 
magnetic field without any change in sign despite 
the fact that a change in magnetic field direction 
must be observed in these geometries, which will 
be shown later (in Fig. 5). This phenomenon, 
however, has not been considered before. 
 
To overcome such problems and compute 
accurately the induced magnetic flux density, 
direct solution of the Ampere’s law (eq. 3) is 
suggested. The solution is as follows which 
should be calculated numerically. 
 

��⃑ =
�

4�
�

�⃑×��⃑

��
�∀

∀

 

 
At first, Due to the steady Faraday’s law, one can 
define the electric potential V where:
 

��⃗ = −�� 
 
Combining equations 2, 4 and 18 yields the 
Poisson’s equation for electric potential as: 
 

��� = �. ���⃗ × ��⃗ � 

 
Therefore applying the potential level of cathode 
and anode (which is the input of problem) as a 
boundary condition of equation 19 determines 
directly the electric potential distribution and next 
the electric field from equation 18. Then, 
equation 2 specifies the electric current. Finally, 
equation 17 can be solved to find the induced 
magnetic field. 
 
It should be emphasized that in the simulation of 
axisymmetric fields, the two-dimensional grids 
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Fig. 1. Electric current lines in typical MPDT 

In addition, using equation 12 with applying eq. 
ndary condition instead of applying 

correct B. C. only yields a variation of induced 
magnetic field without any change in sign despite 
the fact that a change in magnetic field direction 
must be observed in these geometries, which will 

g. 5). This phenomenon, 
however, has not been considered before.  

To overcome such problems and compute 
accurately the induced magnetic flux density, 
direct solution of the Ampere’s law (eq. 3) is 
suggested. The solution is as follows which 

(17) 

At first, Due to the steady Faraday’s law, one can 
define the electric potential V where: 

(18) 

Combining equations 2, 4 and 18 yields the 
Poisson’s equation for electric potential as:  

(19) 

Therefore applying the potential level of cathode 
and anode (which is the input of problem) as a 
boundary condition of equation 19 determines 
directly the electric potential distribution and next 

18. Then, using 
equation 2 specifies the electric current. Finally, 
equation 17 can be solved to find the induced 

It should be emphasized that in the simulation of 
dimensional grids 

are used but equation 17 is a three
integral. Thus the imaginary data on angular 
sections of the flow field must be generated and 
used as explained in next part. 
 
3. NUMERICAL PROCEDURE 

RESULTS 
 
The finite volume method is used here to 
discretize the Poisson’s equation 19 to find the 
electric potential distribution. Although the 
Maxwell’s equations should be solved 
simultaneously with the flowfield equations, but 
the focus is only on electromagnetic field’s 
computation in the present study. Thus, 
no simulation and discussion on flow. The author 
has enough experiences on numerical 
computation of the flow field [46-49]. 
 
The ghost cells are used to apply the boundary 
conditions. The specified electric potential are 
applied on electrodes and the normal change of 
electric potential is zero on insulators.
electric current and displacement vectors in three 
dimensions are defined as below, where 
subscripts 1 shows all cells and subscripts 2 
shows the specific cell in which magnetic field 
should be computed.  
 

�⃑ = ���� + ���� + ���̂ 

 

��⃑ = (�� − ��)�� + (�� − ��)�� + 
(�� − ��)�̂ 

 
Computing the cross product in equation 17 and 
considering: 
 

� = � cos � 
 

� = � sin � 

 
And regarding that the electric current in 
imaginary angular plates is simple function of the 
referenced plate as: 
 

�� = �����
 

 

�� = �����
cos � 
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are used but equation 17 is a three-dimensional 
integral. Thus the imaginary data on angular 
sections of the flow field must be generated and 

NUMERICAL PROCEDURE AND 

The finite volume method is used here to 
the Poisson’s equation 19 to find the 

electric potential distribution. Although the 
Maxwell’s equations should be solved 
simultaneously with the flowfield equations, but 
the focus is only on electromagnetic field’s 
computation in the present study. Thus, there is 
no simulation and discussion on flow. The author 
has enough experiences on numerical 

49].  

The ghost cells are used to apply the boundary 
conditions. The specified electric potential are 

the normal change of 
electric potential is zero on insulators. The 
electric current and displacement vectors in three 
dimensions are defined as below, where 
subscripts 1 shows all cells and subscripts 2 
shows the specific cell in which magnetic field 

(20) 
 

�  (21) 

Computing the cross product in equation 17 and 

(22) 
 

  (23) 

And regarding that the electric current in 
plates is simple function of the 

    
(24) 

 
    

(25) 



One can find the magnetic field at point 2 as:

�� =
�

4�
�

�����
(�� − �� cos �)

[(�� − ��)� + (��)� +
∀

 

It is replaced by the next summation in numerical procedure according to  

 

��(�, �) =
�

4�
�

2�

����

� � � �

����

�

����

���

����

���

 
Where 
 

� = ��(�, �) ��(�, �) − �(�, �) cos

 
And 
 

� = ��(�, �) cos �
2�(� − 1)

����

� ��(�

 
And 
 

� = ���(�, �) − �(�, �)�
�

+ ��(�

 
The electromagnetic field is accurately calculated 
using this procedure iteratively until the solution 
is converged. One can use equation 26 with 
some algebraic efforts and shows that it yields 
exactly the magnetic field distribution around and 
within the current-carrying wire which is found in 
text books. So the suggested procedure can be 
used numerically to study the complicated 
problems as MPDTs instead of questionable 
previous common method.  
 
Here, the magnetic field between two concentric 
electrodes in quiescent flow is considered. The 
cathode and anode are corresponding parts on 
two cylinders as shown in Fig. 2.  
 
The electric potential difference of 1 KV is 
applied to the electrodes with inner and outer 
radius of 0.02 m and 0.1 m respectively. The 
cylinder length is 0.3 m which it’s one third is 
electrode. The electric conductivity is assumed 
20 A/Vm. The electric potential contours are 
presented in Fig. 3. Each line shows 100 V 
difference. Due to the axial symmetry, the mean 
potential level is closer to the cathode; it is 
different from two-dimensional distribution. The 
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One can find the magnetic field at point 2 as: 

) − �����
cos � (�� − ��)

) + (��)� − 2���� cos �]� �⁄
�∀ 

It is replaced by the next summation in numerical procedure according to  �∀= �
��

����
� ��

� �
� − �

�
�

���

��

�(�, �)�(�, �) 

�
2�(� − 1)

����

�� 

� (�, �) − �(�, �)� 

� (�, �)�
�

+ ��(�, �)�
�

− 2�(�, �)�(�, �) cos �
2�(� − 1)

����

��

�

The electromagnetic field is accurately calculated 
using this procedure iteratively until the solution 
is converged. One can use equation 26 with 
some algebraic efforts and shows that it yields 
exactly the magnetic field distribution around and 

carrying wire which is found in 
text books. So the suggested procedure can be 
used numerically to study the complicated 
problems as MPDTs instead of questionable 

Here, the magnetic field between two concentric 
n quiescent flow is considered. The 

cathode and anode are corresponding parts on 

The electric potential difference of 1 KV is 
applied to the electrodes with inner and outer 
radius of 0.02 m and 0.1 m respectively. The 

linder length is 0.3 m which it’s one third is 
electrode. The electric conductivity is assumed 
20 A/Vm. The electric potential contours are 
presented in Fig. 3. Each line shows 100 V 
difference. Due to the axial symmetry, the mean 

to the cathode; it is 
dimensional distribution. The 

electric current lines are shown in Fig. 4. The 
contours of angular magnetic flux density are 
presented in Fig. 5. It shows that the magnetic 
field magnitude has symmetry with respect 
vertical plate of symmetry but with opposite sign. 
The magnetic field is anticlockwise at the left of 
domain and is clockwise at right. The magnetic 
field distribution on the outer cylinder is shown in 
Fig. 6 using different grids which show the gri
independency of results.  

 

 
Fig. 2. Concentric electrodes
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(26) 

� ���� . 

(27) 

(28) 

(29) 

)
�

� �⁄

 (30) 

electric current lines are shown in Fig. 4. The 
contours of angular magnetic flux density are 
presented in Fig. 5. It shows that the magnetic 
field magnitude has symmetry with respect to the 
vertical plate of symmetry but with opposite sign. 
The magnetic field is anticlockwise at the left of 
domain and is clockwise at right. The magnetic 
field distribution on the outer cylinder is shown in 
Fig. 6 using different grids which show the grid-

 

Fig. 2. Concentric electrodes 



Fig. 3. Equipotential lines between

Fig. 4. Electric current line

Fig. 5. Contours of angular magnetic flux densit
 

 
Fig. 6. Magnetic field distribution on the outer 

cylinder 
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Equipotential lines between concentric electrodes 

 

 
Electric current lines between concentric electrodes 

 

 
Contours of angular magnetic flux density between concentric electrodes

 

Fig. 6. Magnetic field distribution on the outer 

Finally, this computation is repeated for the 
axisymmetric nozzle geometry (as Fig. 7). The 
electric potential difference and conductivity are 
1 KV and 20 A/Vm respectively. Equipotential 
and electric current lines are presented in Fig. 8. 
The contours of angular magnetic flux density in 
this geometry are presented in Fig. 9. Here, the 
induced magnetic field’s range is from 
+1 mT and is computed equal to zero on axis of 
symmetry as expected.  
 
The magnetic field profile at the inlet is shown in 
Fig. 10. It shows that the magnetic field is not 
inversely proportional to the radial position as eq. 
13. The total electric current is calculated here 
about 1.2 kA, so using eq. 13 shows the 
maximum magnetic field of 11 mT. On the other 
hand, the accurate computation shows the 
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Finally, this computation is repeated for the 
nozzle geometry (as Fig. 7). The 

electric potential difference and conductivity are 
1 KV and 20 A/Vm respectively. Equipotential 
and electric current lines are presented in Fig. 8. 
The contours of angular magnetic flux density in 

ed in Fig. 9. Here, the 
induced magnetic field’s range is from -4.6 mT to 
+1 mT and is computed equal to zero on axis of 

The magnetic field profile at the inlet is shown in 
Fig. 10. It shows that the magnetic field is not 
inversely proportional to the radial position as eq. 
13. The total electric current is calculated here 
about 1.2 kA, so using eq. 13 shows the 

etic field of 11 mT. On the other 
hand, the accurate computation shows the 



magnitude of 1.3 mT (Fig. 10). Therefore, the 
vital discrepancy is observed between these two 
results that confirms the importance of using 
accurate method of induced magnetic field
computation in comparison with inappropriate 
 

Fig. 8. Electric current and 

Fig. 9. Contours of angular magnetic flux density in nozzle
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magnitude of 1.3 mT (Fig. 10). Therefore, the 
vital discrepancy is observed between these two 
results that confirms the importance of using 
accurate method of induced magnetic field’s 
computation in comparison with inappropriate 

method which has been used frequently. Such a 
mistake yields the errors on estimating the 
Lorentz force and electric current in relevant 
problems.

 
 

Fig. 7. Nozzle geometry 
 

 
 

Fig. 8. Electric current and equipotential lines in nozzle 
 

 
 

Fig. 9. Contours of angular magnetic flux density in nozzle 
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method which has been used frequently. Such a 
mistake yields the errors on estimating the 
Lorentz force and electric current in relevant 



 
Fig. 10. Magnetic field profile at the nozzle 

inlet 
 

4. CONCLUSION 
 
In the present study, the accurate method to 
compute the induced magnetic field is suggested 
to be utilized to study numerically the 
magnetoplasmadynamic thrusters or similar 
problems. This method is direct solution of the 
Ampere’s law, which yields a three
integration that should be computed numerically. 
The former method is analyzed and is shown that 
is not accurate due to the lack of proper 
boundary conditions. Typical problem is 
investigated to show the disability of common 
method in predicting the induced magnetic field 
variation and direction, which is vital to study 
carefully the performance of MPDTs. Using the 
suggested method leads to accurate distribution 
of the induced magnetic fields. 
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