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Abstract 
 

The estimation of stress-strength reliability function based on record values has attracted the attention of 
authors because of its important role in industrial tests, where in some situations not all observations are 
considered in the study but only observations which are more extreme than the current observations, 
which represent record values, are the subject of the study. This paper deals with the estimation of 
� = �[� < �], when X and � are two  independently exponentiated inverted Weibull distributed random 
variables based on lower record values. Non-Bayesian estimator using maximum likelihood method and 
Bayesian estimators using squared error and LINEX loss functions are derived. The exact confidence 
interval of the reliability is also derived. For illustrative purposes, analysis of a simulated data set has 
been performed to compare the different estimators and to investigate the coverage probabilities of 
confidence intervals. 

 

Keywords: Exponentiated inverted Weibull distribution; stress- strength reliability; lower record values. 
 

1 Introduction 
 
The inverted Weibull distribution is one of the most popular lifetime probability distributions which can be 
used and applied to a wide range of situations including applications in reliability engineering discipline, 
medicine and ecology. Some applications used the inverted Weibull distribution as a model of a variety of 
failure characteristics such as infant mortality, useful life and wear-out periods as mentioned by [1,2]. 
 
An exponentiated distribution is a generalization of the distribution through adding a new shape parameter 
by the exponentiation of the distribution function F in the form F  . Extending the inverted Weibull 
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distribution to the exponentiated inverted Weibull distribution has been proposed by [3] through adding a 
new shape parameter which might be address the lack of fit of the inverted Weibull distribution for modeling 
lifetime data which indicate non-monotone failure rates. 
 
According to this study, it is observed that the exponentiated inverted Weibull distribution (EIW) can be 
serving as alternative to the inverted Weibull distribution and it is expected that in some situations it might 
work better than the inverted Weibull distribution. For � > 0 and > 0, the probability density function (pdf) 
and cumulative distribution function (cdf) of the EIW (�, �) are given, respectively, as follows:  
 

�(�; �, �) = ����(���)(���− ���)� , � > 0,                            (1) 

�(�; �, �) = (���− ���)�.                                                                                              (2) 

 
Record values have a great important role in real life problems involving data relating to several fields such 
as weather, economics and sports data. The statistical study of record values began with [4] who introduced 
the main idea of record values, record times, inter record times and formulated the theory of record values as 
a model for successive extremes in a sequence of independently and identically distributed random variables. 
The prominent theoretical contributions and inference issues of the record values have been proposed by [5-
8]. The record values can be classified into the lower and the upper records. An observation �� will be called 
a lower record values if its values are less than all previous observation (i.e., �� < �� for every  �> �) and it 

will be called an upper record values if its values exceeds that of all previous observations (i.e., �� > �� for 

every �< �). 

 
In reliability stress- strength model, the system or the component is still working as far as the stress doesn’t 
exceed strength. The probability of this event is the stress-strength reliability model, which includes two 
random variables � and � where � denotes the strength of the system or the component while � denotes the 
stress which is subjected to it. The probability � = �[� < �] is the stress- strength reliability function. The 
stress-strength model is of special importance in reliability literature because it has an important role and 
useful applications in various fields.  
 
Due to the practical point of views of reliability stress-strength model, the estimation problem of � = �[� <
�] has attracted the attention of many authors. This model was introduced by [9] and the main development 

was considered by [10]. The estimation problem of � has been investigated in the literature for many 
distributions by several authors; see for example [11-14].  
 
Recently, the growing interest about the estimation of stress-strength reliability � associated with record 
values have been raised in many fields such as industrial test. The estimation of stress strength � based on 
record values is considered by [15] for generalized exponential distribution. Subsequent papers extended this 
work for some lifetime models, for instance [16-18], for one and two parameters exponential distribution, 
[19] for type I generalized logistic distribution, [20] for two-parameter Weibull distribution, [21] for inverse 
Rayleigh distribution, [22] for exponentiated Weibull distribution.  
 
This article aims to estimate the stress-strength reliability function � = �[� < �] when the strength � and 
the stress � are two independent variables of EIW distribution and their measurements are in terms of lower 
record values. Assuming that the scale parameter is known, maximum likelihood estimate and exact 
confidence interval of � are derived. In addition, the Bayes estimate of � based on independent gamma 
priors for the unknown parameters are obtained under squared error and LINEX loss functions. The 
procedures are illustrated by analyzing a simulated data. The rest of the paper is organized as follows. In 
Section (2) maximum likelihood estimator and exact confidence interval of � are discussed. In Section (3), 
the Bayes estimates of � against both squared error and LINEX loss functions are discussed. Steps of 
simulation study are proposed in Section (4). Finally, conclusions appear in Section (5). 
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2 Likelihood Inference 
 
In this section maximum likelihood estimate (MLE) of � is obtained. Also, the exact confidence interval of 
� is derived. 
 

2.1 MLE of the Reliability Function � 
 
Let � be the strength of a system or component which is subjected to the stress �. Assuming 
that �~EIW(��, �), and �~ EIW(��, �), then the reliability function is obtained as follows; 

 

� = �(� < �) = � �[� < �|� = �]��(�)���
�

�

, 

 

               � = � ����
�(���)(���− ���)��

�

�

(���− ���)���� =
��

�� + ��
. 

 

(3) 

Let � = (��, ��, … , ��) be a set of the first observed lower record values of size (� + 1) from EIW with 

parameters  1,   and � = (��, ��, … , ��) be an independent set of the observed first lower record values of 

size (� + 1) from EIW with parameters  2,   where   assumed known. The likelihood functions for 

both observed  � and � are given, respectively, (See [7]), by 
 

�����, ����� = �(��)∏
�(��)

�(��)
���
��� ;   0 < �� < ���� < ⋯ < �� < ∞ ,        (4) 

 
and, 
 

�����, ����� = �(��)∏
�(��)

�(��)
���
��� ;   0 < �� < ���� < ⋯ < �� < ∞,                                       (5) 

 
where �(.) and �(.) are respectively, the pdf and cdf of � and �(.) and �(.) are the pdf and the cdf of � 
respectively. The likelihood function of the observed record values � and  �  are obtained, as follows 
 

�����, ����� = (���)
�������(��)

��
∏ ��

�(���)�
��� ,   (6) 

 
and, 

 

 �����, ����� = (���)
�������(��)�� ∏ ��

�(���)�
��� .   (7) 

 
Therefore, the joint log- likelihood function of the observed � and � denoted by � takes the following form 
 

 � = (� + 1)���� + (� + 1)���� + (� + � + 2)��� − ����
�� − ����

�� 

                      − (� + 1)�∑ ln(��)
�
��� + ∑ ln����

�
��� �                                                                                       

 

 
  (8) 
 

The maximum likelihood estimators of 1  and 2 , denoted by ��� and  ���, based on the observed lower 

record are obtained by solving the following equations 
 

 
��

���
=
(� + 1)

���
− ��

�� = 0, 
(9) 
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��

���
=
(� + 1)

���
− ��

�� = 0. (10) 

 
From (9) and (10), ��� and  ��� are obtained as follows  
 

��� =
(� + 1)

����
, ��� =

(� + 1)

����
 (11) 

 
Hence, the maximum likelihood estimator of of  �, denoted by �� , is given by substitute ��� and  ��� in (3) as 
follows 
 

�� =
���

�������
.                                                                                                                                       (12) 

  

2.2 Confidence Interval of � 
 
In this subsection the exact confidence interval of  � is derived. Therefore the distribution of  � must be 
obtained. To derive the distribution of of  � firstly the distributions of ��� and  ���must be obtained. Consider 

that ��� =
(���)

��
�� ,  then according to [7], the pdf of  �� is given by 

 

 ���(��) =
�

�(���)
[− ln �(��)]

��(��)  ,             0 < �� < ∞, � = 0,1,2, … 

���(��) =
��

����

�(���)
��

��(���)��������
��

. 

 

Similarly, for  ��� =
(���)

��
��  ,    the pdf of  S� is given by 

   

���(��) =
��

����

�(���)
��

��(���)��������
��
, 0 < �� < ∞, � = 0,1,2, ….  

 

Therefore, the probability density functions of ��� =
(���)

��
��  and  ��� =

(���)

��
�� , are obtained as follows; 

 

Let  �� = ��� =
(���)

��
�� ,  �� = ��� =

(���)

��
�� , it is easy to show that the probability density functions of �� and 

�� are given as follows 
 

�(��) =
[(���)��]

���

�(���)��
��� �

�(���)��
�� , �� > 0,   �(��) =

[(���)��]
���

�(���)��
��� �

�(���)��
�� , �� > 0. 

 
These are recognized as the inverted gamma distribution; that is, �� has inverted gamma  [(� + 1), (� +
1�1, and similarly �2 has inverted gamma �+1,�+1�2, therefore the pdf of � can be obtained as follows 

   

�� =
��

�� + ��
=

1

1 +
��

��

. 

 
Considering, �� ��⁄  , it is easy through the properties of the inverted gamma distribution and its relation with 
the gamma distribution to show that 
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 2(� + 1)��

Z�
~��(���)

�      and    
2(� + 1)��

Z�
~��(���)

�  (13) 

 

Since, �� and �� are independent, then it can be shown that  
��

��
~

��

��
F�(���),�(���),  where F�(���),�(���) is F 

distribution with 2(� + 1), 2(� + 1) degrees of freedom. The exact distribution of ��  written as 
 

����� =
 �

��
��
��
  ��(���),�(���)

. 

 

A (1 − �)% confidence interval for �, based on lower record values is (��, �� ), where 
 

�� = �1 +
��

�� �� �⁄ ,�(���),�(���)
�
��

, �� = �1 +
��

�� ���� �⁄ ,�(���),�(���)
�
��

,    (14) 

 
are the lower and upper α/2-th percentile points of F�(���),�(���). 

 

3 Bayesian Inference 
 
In this section, the Bayes estimate of � is obtained under the assumption that the shape 
parameters ��and  �� are random variables for both populations. Two different loss functions are used; 
squared error and LINEX. 
 

3.1 Bayes Estimate of R Based on Squared Error Loss Function 
 
To obtain the Bayes estimate of � under squared error loss function, firstly it must to obtain the Bayes 

estimate of 1  
and 2 . Then according to [23], the conjugate priors of 1  and 2  are selected to be gamma 

distributions as follows 
 

��(��) ∝ ��
��������   and  ��(��) ∝ ��

��������, 
 

where a, b, c and d are the parameters of prior distributions of 1  and 2  respectively. 

 
The posterior distributions of  �� and ��, denoted by ��

∗(��) and ��
∗(��),  are obtained by combining the 

likelihood functions (6) and (7) and the prior density functions  ��(��),   ��(��) as follows 
 

 ��
∗(��) =

[��
�(�) + �]�����

Γ(� + � + 1)
��

�������[����
��], 

 
        (15) 

 ��
∗(��) =

[��
�(�) + �]�����

Γ(� + � + 1)
��

�������[����
��].         (16) 

 

The Bayes estimates of 1  and 2  under squared error loss function, denoted by ���(��) and  ���(��), are the 

posterior means which can be obtained as follows 
 

���(��) = ∫   ��
�

�
��
∗(��)��� =

�����

[��
�(�)��]

 , 
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and, 
 

���(��) = ∫   ��
�

�
��
∗(��)��� =

�����

[��
�(�)��]

 . 

 
Therefore the Bayes estimate of � under squared error loss function, denoted by ���� can be obtained by 

substitute ���(��)  and  ���(��) in Equation (3) as follows 

 

���� =
���(��)

���(��) + ���(��)
. 

 
3.2 Bayes Estimate of R Based on LINEX Loss Function 
 
In this subsection the Bayes estimate of � under LINEX loss function is obtained. The Bayes estimate of 1  

and 2  under LINEX loss function, denoted by ���(�����)  and  ���(�����),  are obtained as follows 

 

���(�����) =
−1

ℎ
ln [��������] =

−1

ℎ
�� �

[��
�(�) + �](�����)

[��
�(�) + � + ℎ](�����)

�, 

 

���(�����) =
−1

ℎ
ln [��������] =

−1

ℎ
�� �

[��
�(�) + �](�����)

[��
�(�) + � + ℎ](�����)

�. 

  
Therefore the Bayes estimate of � under LINEX loss function, denoted by ������� can be obtained by 

substitute ���(�����)  and  ���(�����) in Equation (3) as follows 

 

������� =
���(�����)

���(�����) + ���(�����)
. 

 
3.3 Bayes Confidence Interval of R 
 
In Bayesian inference, to derive the distribution of stress-strength function �, the posterior distribution of 1  

and 2  must be considered. According to Equations (15 and 16), the posterior distribution of 1  and 2  has 

gamma distribution as follows: 
  

��
∗(��|��)~�����[� + � + 1, (��

�(�) + �)],                  (17) 

  

 ��
∗(��|��)~�����[� + � + 1, (��

�(�) + �)].                  (18) 

 
From the properties of gamma distribution and its relation with chi-square distribution, it is easy to show that 
 

2(��
�(�) + �)[��|�]�~��(�����)

�  and   2(��
�(�) + �)[��|�]�~��(�����)

� .     (19) 

 
Then, the posterior distribution of reliability function �, denoted by ��� is  
 

������ = �1 +
���

�(�) + ��(� + � + 1)

(��
�(�) + �)(� + � + 1)

F�(�����),�(�����)�

��

. 
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Therefore, a Bayesian(1 − �)%  confidence interval for � based on lower record values is (��, �� ), where  
 

�� = �1 +
���

�(�) + ��(� + � + 1)

(��
�(�) + �)(� + � + 1)

F��� �⁄ ,�(�����),�(�����)�

��

, 
 

and, 
 

          
(20)  

�� = �1 +
���

�(�) + ��(� + � + 1)

(��
�(�) + �)(� + � + 1)

F� �⁄ ,�(�����),�(�����)�

��

 , 
 

 
are the lower and upper α/2-th percentile points of  F�(�����),�(� ����) . 
 

4 Simulation Study 
 
In this section a simulation study is designed to investigate and to compare the performance of MLE and 
Bayes estimates (under squared error and LINEX loss functions). The exact values of stress-strength 
reliability � are chosen as �= 0.25, 0.54 and 0.75. The estimates of stress-strength reliability � through 
maximum likelihood and Bayesian techniques are calculated. The exact confidence interval of � is derived 
for both methods. The simulation study is designed through the following steps: 
  

1. Generate 5000 uniform (0, 1) random variables and then get the corresponding EIW random samples 
of sample size 200 through the transformation technique. 

2. Select from each vector the first (� + 1), � = 2(1)9, lower record values ��, ��, … , �� for the values of 
strength random variables � under the assumption that  is known. 

3. Repeat the previous two steps to generate 5000 random samples of size 200 from EIW and select 
from each vector the first (� + 1), � = 2(1)9  lower record values ��, ��, … , �� for the values of 
stress random variables � under the assumption that   is known. 

4. The MLE of ��� and  ��� are obtained from (11), then the MLE of � is obtained by substitute ��� and  ��� 
in (12). The exact confidence intervals of � using (14) are constructed with confidence level at 
 � = 0.05.  

5. For given values of prior parameters  � = � = 2, � = � = 3, the Bayes estimates of �  under squared 
error and LINEX loss functions are obtained. Also, the 95% Bayes confidence interval of stress-
strength reliability under both loss functions are calculated. 

6. Compute the average for �, ����and �������, mean square errors (MSEs), coverage percentages, and 
average probability interval lengths. 

 

5 Results and Discussion 
 
Simulation results are reported in Tables (1-6) and represented through Figs. (1-3). From these tables, the 
following results can be observed on the properties of reliability estimates 
 

1. The coverage percentage of MLE is better than that of the Bayesian estimator at � = 0.25 according 
to Tables (1, 2). 

2. Tables (1, 2) show that the coverage percentage of Bayesian estimator under LINEX loss function, 
where ℎ = 2, is better than the Bayes one under square error loss function. 

3. The coverage percentages of MLE and Bayes estimate are almost equal at � = 0.54, 0.75 according to 
Tables (3-6). 

4. The average length of the confidence intervals for MLE is shorter than the Bayes one according to 
Tables (1-6). 

5. For fixed value of �, the coverage percentages increase when � = �. 
6. It is observed from Tables (1-6) that when � and � increase, the coverage percentages decrease for 

different estimators at different values of �. 
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7. The length of the non-Bayes confidence interval for the reliability � is shorter than the Bayes 
confidence interval (under both loss functions). 

 

Table 1. Simulation results for MLEs and Bayes estimates under squared error loss function 
when �� = �, �� = � and β=1 with �-exact=0.25 

 

n m MLE Bayes (squared loss function) 

Mean MSE Length Coverage Mean MSE Length Coverage 

2 2 0.219 0.069 0.356 0.999 0.363 0.032 1.782 0.980 

3 2 0.146 0.050 0.290 0.968 0.312 0.027 1.586 0.930 
3 0.184 0.048 0.315 0.999 0.303 0.023 1.527 0.929 
4 0.182 0.048 0.290 0.910 0.264 0.025 1.27 0.832 

4 3 0.133 0.041 0.256 0.920 0.251 0.022 1.362 0.807 

4 0.158 0.038 0.275 0.988 0.257 0.019 1.334 0.812 

5 0.137 0.038 0.230 0.831 0.208 0.024 1.024 0.658 

5 4                 0.116 0.037 0.217 0.844 0.205 0.022 1.127 0.631 

5 0.144 0.030 0.253 0.997 0.232 0.015 1.215 0.718 
6 0.106 0.037 0.180 0.748 0.165 0.026 0.834 0.505 

6 5 0.101 0.037 0.180 0.745 0.168 0.025 0.907 0.488 
6 0.134 0.028 0.228 0.994 0.213 0.013 1.108 0.609 
7 0.086 0.039 0.144 0.667 0.135 0.029 0.685 0.385 

7 6 0.085 0.038 0.146 0.647 0.138 0.029 0.725 0.367 

7 0.126 0.026 0.207 0.977 0.198 0.013 1.009 0.521 
8 0.071 0.041 0.116 0.594 0.112 0.032 0.568 0.284 

8 8 0.121 0.025 0.193 0.996 0.190 0.012 0.961 0.421 

9 9 0.113 0.027 0.171 0.908 0.174 0.015 0.825 0.348 
 

Table 2. Simulation results for Bayes estimates under LINEX loss function when  �� = �, �� = � and 
β=1 with �-exact =0.25 

 

n m Bayes (LINEX loss function) , � = � Bayes (LINEX loss function), � = −� 

Mean MSE length Coverage Mean MSE length Coverage 

2 2 0.378 0.032 1.782 0.988 0.334 0.032 1.782 0.952 

3 
2 0.334 0.029 1.586 0.946 0.272 0.027 1.586 0.872 
3 0.321 0.023 1.527 0.953 0.273 0.025 1.527 0.851 
4 0.275 0.023 1.270 0.853 0.244 0.028 1.270 0.755 

4 

3 0.271 0.022 1.362 0.855 0.217 0.024 1.362 0.691 
4 0.275 0.018 1.334 0.876 0.230 0.021 1.334 0.695 

5 0.220 0.023 1.024 0.707 0.189 0.027 1.024 0.577 

5 

4 0.222 0.022 1.127 0.714 0.178 0.025 1.127 0.505 

5 0.250 0.013 1.215 0.794 0.207 0.017 1.215 0.585 

6 0.176 0.025 0.834 0.560 0.149 0.028 0.834 0.424 

6 

5 0.182 0.025 0.907 0.554 0.147 0.028 0.907 0.375 

6 0.230 0.012 1.108 0.692 0.189 0.016 1.108 0.478 
7 0.145 0.028 0.685 0.440 0.121 0.031 0.685 0.304 

7 

6 0.150 0.028 0.725 0.429 0.121 0.031 0.725 0.279 

7 0.215 0.011 1.009 0.616 0.176 0.016 1.009 0.380 

8 0.121 0.031 0.568 0.339 0.100 0.034 0.568 0.210 

8 8 0.206 0.009 0.961 0.517 0.169 0.015 0.961 0.320 

9 9 0.188 0.014 0.825 0.433 0.155 0.018 0.825 0.257 
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Table 3. Simulation results for MLEs and Bayes estimates under squared error loss function 
when �� = �, �� = �.� and β=1 with �-exact =0.545 

 
n m MLE Bayes (squared loss function) 

Mean MSE Length Coverage Mean MSE Length Coverage 

2 2 0.555 0.106 0.465 0.999 0.514 0.007 2.175 0.997 

3 

2 0.465 0.106 0.453 0.968 0.522 0.017 1.841 0.965 

3 0.561 0.081 0.460 0.999 0.523 0.010 1.769 0.999 

4 0.551 0.092 0.410 0.910 0.466 0.037 1.475 0.910 

4 

3 0.478 0.093 0.422 0.920 0.496 0.033 1.528 0.920 
4 0.557 0.068 0.441 0.988 0.522 0.015 1.499 0.988 

5 0.492 0.098 0.366 0.831 0.433 0.060 1.155 0.831 

5 

4 0.461 0.095 0.376 0.844 0.459 0.055 1.242 0.844 

5 0.572 0.052 0.433 0.997 0.534 0.012 1.343 0.997 

6 0.432 0.109 0.321 0.748 0.391 0.083 0.925 0.748 

6 
5 0.424 0.110 0.319 0.745 0.411 0.083 0.990 0.745 

6 0.570 0.044 0.416 0.994 0.535 0.012 1.213 0.994 
7 0.382 0.125 0.276 0.667 0.350 0.106 0.752 0.667 

7 

6 0.376 0.130 0.266 0.647 0.360 0.111 0.786 0.647 

7 0.565 0.041 0.394 0.977 0.530 0.017 1.097 0.977 

8 0.337 0.140 0.238 0.594 0.312 0.127 0.620 0.594 

8 8 0.572 0.033 0.386 0.996 0.538 0.011 1.040 0.996 

9 9 0.534 0.054 0.336 0.908 0.499 0.036 0.892 0.908 
 

Table 4. Simulation results for Bayes estimates under LINEX loss function when 
 �� = �, �� = �.�  and β=1 with �-exact =0.545 

 

n m Bayes (LINEX loss function), � = � Bayes (LINEX loss function), � = −� 
Mean MSE Length Coverage Mean MSE Length Coverage 

2 2 0.512 0.005 2.175 0.997 0.519 0.012 2.175 0.997 

3 
2 0.525 0.015 1.841 0.965 0.513 0.023 1.841 0.965 

3 0.519 0.007 1.769 0.999 0.530 0.016 1.769 0.999 
4 0.458 0.035 1.475 0.910 0.483 0.042 1.475 0.910 

4 

3 0.498 0.031 1.528 0.920 0.492 0.039 1.528 0.920 

4 0.518 0.012 1.499 0.988 0.529 0.021 1.499 0.988 

5 0.426 0.058 1.155 0.831 0.447 0.064 1.155 0.831 

5 
4 0.459 0.053 1.242 0.844 0.458 0.060 1.242 0.844 

5 0.530 0.009 1.343 0.997 0.543 0.017 1.343 0.997 

6 0.386 0.082 0.925 0.748 0.401 0.087 0.925 0.748 

6 
5 0.409 0.082 0.990 0.745 0.413 0.088 0.990 0.745 
6 0.531 0.010 1.213 0.994 0.544 0.017 1.213 0.993 
7 0.346 0.105 0.752 0.667 0.358 0.109 0.752 0.667 

7 

6 0.358 0.110 0.786 0.647 0.363 0.115 0.786 0.647 

7 0.525 0.015 1.097 0.977 0.538 0.021 1.097 0.977 

8 0.308 0.126 0.620 0.594 0.318 0.129 0.620 0.594 

8 8 0.533 0.008 1.040 0.996 0.546 0.015 1.040 0.995 

9 9 0.494 0.034 0.892 0.908 0.508 0.039 0.892 0.908 
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Table 5. Simulation results for MLEs and Bayes estimates under squared error loss function 
when �� = �, �� = � and β=1 with �-exact =0.75 

 
n m MLE Bayes (squared loss function) 

Mean MSE Length Coverage Mean MSE Length Coverage 

2 2 0.784 0.069 0.351 0.999 0.638 0.032 2.43 0.999 

3 

2 0.718 0.088 0.359 0.968 0.637 0.044 2.057 0.967 

3 0.819 0.046 0.316 0.999 0.697 0.023 1.921 0.999 

4 0.78 0.085 0.254 0.910 0.661 0.067 1.581 0.910 

4 

3 0.736 0.086 0.296 0.920 0.653 0.064 1.654 0.920 

4 0.829 0.042 0.280 0.988 0.728 0.025 1.603 0.988 

5 0.717 0.121 0.215 0.831 0.63 0.107 1.227 0.831 

5 

4 0.705 0.115 0.236 0.844 0.632 0.101 1.323 0.844 

5 0.855 0.031 0.251 0.997 0.766 0.016 1.421 0.997 

6 0.647 0.162 0.182 0.748 0.579 0.151 0.977 0.748 

6 

5 0.641 0.164 0.180 0.745 0.581 0.153 1.044 0.745 

6 0.86 0.030 0.230 0.994 0.78 0.016 1.277 0.994 

7 0.579 0.204 0.151 0.667 0.525 0.195 0.791 0.667 

7 

6 0.565 0.215 0.140 0.647 0.516 0.206 0.825 0.647 

7 0.854 0.037 0.206 0.977 0.780 0.024 1.151 0.977 

8 0.517 0.243 0.126 0.594 0.472 0.235 0.650 0.594 

8 8 0.870 0.026 0.199 0.996 0.801 0.013 1.089 0.996 

9 9 0.801 0.074 0.163 0.908 0.740 0.062 0.932 0.908 

 
Table 6. Simulation results for Bayes estimates under LINEX loss function when �� = �, �� = � and 

β=1 with �-exact =0.75 
 

n m Bayes (LINEX loss function), � = � Bayes (LINEX loss function), � = −� 
Mean MSE Length Coverage Mean MSE Length Coverage 

2 2 0.623 0.033 2.430 0.999 0.667 0.032 2.430 0.999 
 
3 

2 0.628 0.043 2.057 0.967 0.653 0.048 2.057 0.967 
3 0.679 0.023 1.921 0.999 0.727 0.025 1.921 0.999 
4 0.640 0.068 1.581 0.910 0.695 0.068 1.581 0.910 

 
4 

3 0.641 0.063 1.654 0.920 0.673 0.067 1.654 0.920 
4 0.711 0.024 1.603 0.988 0.756 0.027 1.603 0.988 
5 0.613 0.106 1.227 0.831 0.756 0.109 1.227 0.831 

 
5 

4 0.620 0.100 1.323 0.844 0.651 0.103 1.323 0.844 
5 0.749 0.015 1.421 0.997 0.792 0.018 1.421 0.997 
6 0.565 0.150 0.977 0.748 0.601 0.153 0.977 0.748 

 
6 

5 0.569 0.152 1.044 0.745 0.597 0.155 1.044 0.745 
6 0.763 0.014 1.277 0.994 0.804 0.019 1.277 0.994 
7 0.513 0.194 0.791 0.667 0.542 0.197 0.791 0.667 

 
7 

6 0.506 0.205 0.825 0.647 0.530 0.208 0.825 0.647 
7 0.764 0.022 1.151 0.977 0.803 0.027 1.151 0.977 
8 0.462 0.234 0.650 0.594 0.486 0.236 0.650 0.594 

8 8 0.785 0.011 1.089 0.996 0.822 0.016 1.089 0.996 
9 9 0.726 0.060 0.932 0.908 0.760 0.065 0.932 0.908 

 



Figs. (1-3) show the trend of mean square errors of the MLE and Bayesian estimators under square error and 
LINEX loss functions for the exact values of 
on the mean square errors of the reliability estimates.
 

Fig. 1. MSE at � = 0.25 for 
 
Fig. 1 shows that the MSEs of the MLE and Bayesian estimator under squared error and LINEX loss 
functions decrease as � and � increase for the exact values of 
under LINEX loss function for ℎ = 2
 

 
Fig. 2. MSE at � = 0.54 for Bayesian and Non
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3) show the trend of mean square errors of the MLE and Bayesian estimators under square error and 
LINEX loss functions for the exact values of � = 0.25, 0.54 and 0.75, the following results can be 
on the mean square errors of the reliability estimates. 

 
0.25 for Bayesian and Non-Bayesian estimator when � = �

1 shows that the MSEs of the MLE and Bayesian estimator under squared error and LINEX loss 
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2 are the smallest one. 
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3) show the trend of mean square errors of the MLE and Bayesian estimators under square error and 
0.25, 0.54 and 0.75, the following results can be observed 

 

� 

1 shows that the MSEs of the MLE and Bayesian estimator under squared error and LINEX loss 
0.25. Also, MSEs of Bayes estimate 

 

� 



It is clear from Fig. 2 that the MSEs of the Bayes estimator under square error and LINEX loss functions are 
less than the MSEs of MLE when � =
has minimum MSEs. 
 
The following observations can made from Fig. 3 as follows:
 

1. The MSEs of the MLE and Bayesian estimator under squared error and LINEX loss functions 
decrease as � and � increase for the exact values of 

2. The MSEs of the Bayes estimator under square error and LINEX loss functions are less than the 
MSEs of MLE when � = 0.75.

3. The MSEs of the Bayesian estimator under LINEX loss function for 
corresponding to the MSEs for the other estimators.

 
 

Fig. 3. MSE at � = 0.75 for Bayesian and Non
 

6 Conclusion 
 
In this paper, the MLE and Bayesian estimators are derived for the stress
when the stress and strength variables are independently EIW distributions based on lower record values. 
Also, the exact Bayesian and non-Bayesian c
   
Generally, the coverage percentage of MLE is better than coverage percentage of the Bayes estimator at 
 � = 0.25. Also average confidence interval lengths of the MLE are shorter than the corresponding average 
confidence interval lengths of the Bayes estimators. The MSEs of the Bayesian estimator under LINEX loss 
function are less than the MSEs of MLE at different exact values of stress
 
Regarding, the number of records (� and 
values of � and � the coverage percentage increases. While the coverage percentage decreases as 
increase. 
 
Based on above the MLE is better than the Bayes estimates (under squ
in terms of the lengths of confidence intervals but the Bayes estimator under LINEX loss function is better 
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MSEs of the Bayes estimator under square error and LINEX loss functions are 
= 0.54. Also, Bayesian estimator under LINEX loss function for 

The following observations can made from Fig. 3 as follows: 

The MSEs of the MLE and Bayesian estimator under squared error and LINEX loss functions 
increase for the exact values of � = 0.75. 

The MSEs of the Bayes estimator under square error and LINEX loss functions are less than the 
0.75. 

The MSEs of the Bayesian estimator under LINEX loss function for ℎ = 2 are the smallest one 
corresponding to the MSEs for the other estimators. 

 
0.75 for Bayesian and Non-Bayesian estimator when � = �

In this paper, the MLE and Bayesian estimators are derived for the stress-strength reliability function 
when the stress and strength variables are independently EIW distributions based on lower record values. 

Bayesian confidence interval of �, are derived.  

Generally, the coverage percentage of MLE is better than coverage percentage of the Bayes estimator at 
0.25. Also average confidence interval lengths of the MLE are shorter than the corresponding average 

idence interval lengths of the Bayes estimators. The MSEs of the Bayesian estimator under LINEX loss 
function are less than the MSEs of MLE at different exact values of stress-strength reliability function 

and �) for the stress and strength variables, it is observed that for small 
the coverage percentage increases. While the coverage percentage decreases as 

Based on above the MLE is better than the Bayes estimates (under squared error and LINEX loss functions) 
in terms of the lengths of confidence intervals but the Bayes estimator under LINEX loss function is better 
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MSEs of the Bayes estimator under square error and LINEX loss functions are 
0.54. Also, Bayesian estimator under LINEX loss function for ℎ = 2  

The MSEs of the MLE and Bayesian estimator under squared error and LINEX loss functions 

The MSEs of the Bayes estimator under square error and LINEX loss functions are less than the 

are the smallest one 

 

� 

strength reliability function � 
when the stress and strength variables are independently EIW distributions based on lower record values. 

Generally, the coverage percentage of MLE is better than coverage percentage of the Bayes estimator at 
0.25. Also average confidence interval lengths of the MLE are shorter than the corresponding average 

idence interval lengths of the Bayes estimators. The MSEs of the Bayesian estimator under LINEX loss 
strength reliability function �. 

for the stress and strength variables, it is observed that for small 
the coverage percentage increases. While the coverage percentage decreases as � and � 

ared error and LINEX loss functions) 
in terms of the lengths of confidence intervals but the Bayes estimator under LINEX loss function is better 
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than the MLE in terms of MSEs. Although the coverage percentages of maximum likelihood and Bayesian 
estimates are almost equal for � = 0.54, 0.75 but the lengths of confidence interval of MLE are shorter than 
the corresponding Bayes one. So, the MLE is better than the Bayes one in terms of the coverage percentage.  
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