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Abstract 
 

In this paper, we prove a unique common fixed point theorem for six weak compatible mappings in 
Menger space which is an alternate result of Pant et al. [1]. 
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1 Introduction 
 
Menger [2] introduced the notion of probabilistic metric spaces, which is a generalization of metric spaces. 
Sehgal and Bharucha-Reid [3] initiated the study of fixed points in probabilistic metric spaces. This study 
was expanded rapidly with the inspiring works of Schweizer and Sklar [4]. The theory of probabilistic metric 
spaces is of fundamental importance in probabilistic functional analysis. 
 
The concept of weak compatible mappings was given by Jungck and Rhoades [5] in metric space. The weak 
commuting concept in metric space has been introduced by Sessa [6]. In 1996, the more generalized concept 
of this has been given by Jungck [7] in metric space. In 1991, Mishra [8] introduced the notion of compatible 
mappings in the setting of probabilistic metric space. By using the fact that weak compatible maps are more 
general than that of compatible maps, Jain et al. [9] proved interesting fixed point theorems.  
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The present paper deals with the theorem using six self mappings through weak-compatibility, which turns 
out to be an alternate result of Pant et al. [1]. We support our theorem by providing a suitable example.  
 

2 Preliminaries 
 
Definition 2.1. [8] A real valued function F on the set of real numbers is called a distribution if it is non-
decreasing, left continuous with  
 

in fuRF(u)=0 and supu R F (u) = 1. 
 
The Heaviside distribution function H is a distribution function defined by  
 


 



0 if u 0
H(u) .

1 if u 0  
 
Definition 2.2. [8] A t-norm  is a function  t :[0, 1] × [0, 1]  [0, 1] if  ([0,1], t) is an abelian topological 
monoid with unit 1 such that   t(c, d)   t(a, b) ; for c  a, d  b, 
 
Definition 2.3. [8] A probabilistic metric space (PM-space) is an ordered pair (X, F), where X is a set and F  
is function defined on  X × X into the set of distribution functions such that if x, y and z are points of X, then  
 

(PM-1) Fx,y(u1) = 1, for all x > 0, if and only if  x = y; 

 

(PM-2) Fx,y (0) = 0; 

 
(PM-3) Fx,y = Fy,x; 

 
(PM-4) If Fx,y (u1) = 1 and Fy,z (u2) = 1 then Fx,z (u1 + u2) = 1, for all u1, u2 > 0.  

 
Definition 2.4. [4] A Menger space is an ordered triple (X, F, t) where (X, F) is a PM-space and t is a t-
norm satisfying the following condition: 
 

(PM-5) Fx, z (u1 + u2)  t {Fx, y (u1), Fy, z(u2) }, for all x, y, z in X and u1, u2  0. 

 
Definition 2.5. [4] A sequence {xn} in (X, F, t) is said to be converge to a point x  X if for every  > 0 and 

 > 0, there exists a positive integer M(, ) such that   
 

Fxn, x () > 1 -   for all n  M(, ).   

 
Further {xn} is said to be Cauchy sequence if for every  > 0 and  > 0, there exists a positive integer              

M(, ) such that   
 

Fxn, xm
() > 1-   for all m, n  M(, ).  

 
A Menger PM-space (X, F, t) with continuous t-norm is said to be complete if every Cauchy sequence in it 
converges to a point in it. 
 

Definition 2.6. [9] Suppose (X, F, t)  be a Menger space. Two self mappings A and S are said to be weak 
compatible if they commute at their coincidence points i.e.  
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Ax = Sx   for x X  implies  ASx = SAx. 
 
Definition 2.7. [10] Suppose (X, F, t) be a Menger space. Self mappings A and S are said to be compatible if  
FASxn, SAxn

(x)  1 for all x > 0, whenever {xn} is a sequence in X such that Axn, Sxn  u for some u in 

X, as n . 
 
Definition 2.8. [1] Suppose (X, F, t) be a Menger space. Self maps S and T are said to be semi-compatible if 
FSTxn, Tu (x)  1 for all x  > 0,  whenever {xn} is a sequence in X such that Sxn, Txn  u for some u in X, 

as n . 
 
It follows that if (S, T) is semi compatible and Sx = Tx then STx = TSx. Thus if the pair (S, T) is semi-
compatible then it is weakly compatible. The converse is not true as seen in [11]. 
 
Remark 2.1. [11] Every semi-compatible pair of self-maps is weak compatible but the reverse is not true 
always.   
 
Lemma 2.1. [12] Suppose (X, F, t) be a Menger space with continuous t-norm t with t(a, a) a and {xn} be 

a sequence. If there exists a constant k (0, 1) such that  
Fxn,xn+1

(kt) Fxn-1, xn
(t) for all t 0 and n = 1, 2, 3, ..., then {xn} is a Cauchy sequence in X.  

 
Lemma 2.2. [12] Suppose in a Menger space (X, F, t), there exists a constant  
k (0, 1) with Fx, y(kt) Fx, y(t) for all x, y X and t > 0, then x = y.  

 
Proposition 2.1. [8] In a Menger space (X, F, t) if t(x, x)  x, x  [0, 1] then  
t(a, b) = min{a, b},  a, b  [0, 1].  
 
Proposition 2.2. Let {xn} be a Cauchy sequence in a Menger space (X, F, t) with continuous t-norm t. If the 
subsequence {x2n} converges to x in X, then {xn} also converges to x. 
 
Proof. As {x2n} converges to x, we have 
 

n n 2 n 2 nx ,x x ,x x ,x
F ( ) t F ,F .

2 2

     
      

      
 
Taking limit as n  we get limn Fxn, x()    t(1, 1), which gives limn Fxn, x()  = 1;  for all   > 0 and 

the result follows. 
 

A class of implicit relation. Let be the set of all real continuous functions  

: (R+)4 R, non-decreasing in the first argument with the property : 
 

a.   For u, v 0,  (u, v, v, u) 0  or  (u,v,u,v)0 implies that u v. 
b. (u, u, 1, 1) 0 implies that u 1. 

 
Example 2.1. Define  (t1,t2,t3,t4) = 18t1 - 16t2 + 8t3 - 10t4.  Then . 

 
Noteworthy results related to fixed point theorems using compatibility of type (A) and weak compatibility in 
Menger space was given in Singh et al. [13,14]. 
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3 Main Results 
 
Theorem 3.1. Let A, B, L, M, S and T be self mappings on a Menger space (X, F, t) with continuous t-norm 
t satisfying: 
 

L(X)  ST(X), M(X)  AB(X);                                                                                               (3.1.1) 
 

AB = BA, ST = TS, LB = BL, MT = TM;                                                                                   (3.1.2) 
 

One of ST(X), M(X), AB(X) or L(X) is complete;                                                                      (3.1.3) 
 

The pairs (L, AB) and (M, ST) are weak-compatible;                                                                 (3.1.4) 
 

for some , there exists k (0, 1) such that for all  x, y X and t > 0,                     (3.1.5) 
 

(FLx, My(kt), FABx, STy(t), FLx, ABx(t), FMy, STy(kt))  0 

 
then  A, B, L, M, S and T have a unique common fixed point in X.   
 
Proof.  Suppose x0  X be any arbitrary point for which there exist x1, x2  X  such that   

 
Lx0 = STx1 = y0 and Mx1 = ABx2 = y1.  

  
Inductively, construct sequences {xn} and {yn} in X such that 

 
Lx2n = STx2n+1 = y2n and Mx2n+1 = ABx2n+2 = y2n+1     

 
for n = 0, 1, 2, ... . 
  
Step 1.  Using (3.1.5) with x = x2n and  y = x2n+1, we get 

 
 (FLx2n, Mx2n+1

(kt), FABx2n, STx2n+1
(t), FLx2n, ABx2n

(t), FMx2n+1, STx2n+1
(kt))  0. 

 
Letting n , we get 
 
 (Fy2n, y2n+1

(kt), Fy2n-1, y2n
(t), Fy2n, y2n-1

(t), Fy2n+1, y2n
(kt))  0. 

 
Using (a), we get 
 
 Fy2n, y2n+1

(kt)  Fy2n-1, y2n
(t). 

 
Therefore, for all n even or odd, we have 
 
 Fyn, yn+1

(kt)  Fyn-1, yn
(t). 

 
Therefore, by lemma  2.1, {yn} is a Cauchy sequence in X.  

 
Case I.  ST(X) is complete.  
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In this case {y2n} = {STx2n+1} is a Cauchy sequence in ST(X), which is complete. Thus {y2n+1} converges to 
some z  ST(X). 
 
By Proposition 2.2, we have 
 
   {Mx2n+1}  z  and  {STx2n+1} z 
 
   {Lx2n}  z  and  {ABx2n}  z. 
 
As z  ST(X) there exists u  X such that z = STu. 
 
Step I. Using (3.1.5) with x = x2n and y = u, we get  
 

(FLx2n, Mu(kt), FABx2n, STu(t), FLx2n, ABx2n
 (t), FMu, STu(kt))  0. 

 
Taking  limit as n , we get 
 

(Fz, Mu(kt), Fz, z(t), Fz, z(t), FMu, z(kt))  0 


(Fz, Mu(kt), 1, 1, Fz, Mu(kt))  0 

 
Using (a) we have Fz, Mu(kt) ≥ 1, for all t > 0.  

 
Hence Fz, Mu(t) = 1.  

 
Thus z = Mu. 

 
Hence STu = Mu = z. As (M, ST) is weak-compatible so we have Mz = STz. 
 
Step II.  Using (3.1.5) with x = x2n and y = z, we get  
 

(FLx2n, Mz(kt), FABx2n, STz(t), FLx2n, ABx2n
 (t), FMz, STz(kt))  0 

 
Taking  limit as n , we get 
 

(Fz, Mz(kt), Fz, z(t), Fz, z(t), FMz, Mz(kt))  0 

 
(Fz, Mz(kt), 1, 1, 1)  0. 

 
Using (a) we have  
 

Fz, Mz(kt) ≥ 1, for all t > 0.  

 
Hence Fz, Mz(t) = 1.  

 
Thus z = Mz. 
 
Step III. Using (3.1.5) with x = x2n and y = Tz, we get  


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(FLx2n, MTz(kt), FABx2n, STTz(t), FLx2n, ABx2n
 (t), FMTz, STTz(kt))  0. 

 
As MT = TM and ST = TS we have MTz = TMz = Tz and ST(Tz) = T(STz) = Tz. Letting n   we get 


(Fz, Tz(kt), Fz, Tz(t), Fz, z(t), FTz, Tz(kt))  0 


(Fz, Tz(kt), Fz, Tz(t), 1, 1)  0 

 
As is non-decreasing in the first argument, we have 
 

(Fz, Tz(t), Fz, Tz(t), 1, 1)  0. 

 
Using (b), we get 
 

Fz, Tz(t) 1  for all t > 0.  

 
Hence, 
 
 Fz, Tz(t)  = 1, for all t > 0, 

 
i.e. z = Tz. 
 
Now STz = Tz = z implies Sz = z.    Hence Sz = Tz = Mz = z. 
 
Step IV.  As M(X)  AB(X) there exists v X such that z = Mz = ABv.  
 
Using (3.1.5) with x = v and y = x2n+1, we get 
 

(FLv, Mx2n+1
(kt), FABv, STx2n+1

(t), FLv, ABv(t), FMx2n+1, STx2n+1
(kt))  0. 

 
Letting n   we get 
 

(FLv, z(kt), Fz, z(t), FLv, z(t), Fz, z(kt))  0 

 
(FLv, z(kt), 1, FLv, z(t), 1)  0. 

 
As is non-decreasing in the first argument, we have 
 

(FLv, z(t), 1, FLv, z(t), 1)  0. 

 
Using (a), we have  
 

FLv, z(t) ≥ 1, for all t > 0 

 
which gives  Lv = z. 
 
Therefore,  ABz = Lz. 
 
Step V. Using (3.1.5) with x = z and y = x2n+1, we get 
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(FLz, Mx2n+1
(kt), FABz, STx2n+1

(t), FLz, ABz(t), FMx2n+1, STx2n+1
(kt))  0. 

 
Letting n   we get 
 

(FLz, z(kt), FLz, z(t), FLz, Lz(t), Fz, z(kt))  0 

 
(FLz, z(kt), FLz, z(t), 1, 1)  0. 

 
As is non-decreasing in the first argument, we have 
 

(FLz, z(t), FLz, z(t), 1, 1)  0. 

 
Using (b), we have  
 

FLz, z(t) ≥ 1, for all t > 0 

 
which gives  Lz = z. 
 
Therefore, ABz = Lz = z. 
 
Step VI. Using (3.1.5) with x = Bz and y = x2n+1, we get 
 

(FLBz, Mx2n+1
(kt), FABBz, STx2n+1

(t), FLBz, ABBz(t), FMx2n+1, STx2n+1
(kt))  0. 

 
As BL = LB, AB = BA, so we have L(Bz) = B(Lz) = Bz and AB(Bz) =B(ABz) = Bz. Letting n   we 
get 
 

(FBz, z(kt), FBz, z(t), FBz, Bz(t), Fz, z(kt))  0 

 
(FBz, z(kt), FBz, z(t), 1, 1)  0. 

 
As is non-decreasing in the first argument, we have 
 

(FBz, z(t), FBz, z(t), 1, 1)  0. 

 
Using (b), we have  
 

FBz, z(t) ≥ 1, for all t > 0 

 
which gives   Bz = z and ABz = z implies Az = z. 
 
Therefore Az = Bz = Lz = z.  
 
Combining the results from different steps, we have  
 

Az = Bz = Lz = Mz = Tz = Sz = z.  
 
Hence the six self maps have a common fixed point in this case.  Case when L(X) is complete follows from 
above case as L(X)  ST(X). 
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Case II. AB(X) is complete. This case follows by symmetry. As M(X)  AB(X), therefore the result also 
holds when M(X) is complete. 
 
Uniqueness. Let u be another common fixed point of A, B, L, M, S and T, then  
 

Au = Bu = Lu = Su = Tu = Mu = u.  
 
Using (3.1.5) with x = z and y = u, we get 
 
 (FLz, Mu(kt), FABz, STu(t), FLz, ABz(t), FMu, STu(kt))  0 

 
 (Fz, u(kt), Fz, u(t), Fz, z(t), Fu, u(kt))  0 

 
 (Fz, u(kt), Fz, u(t), 1, 1)  0. 

 
As is non-decreasing in the first argument, we have 
 
 (Fz, u(t), Fz, u(t), 1, 1)  0. 

 
Using (b), we have 
 
 Fz, u(t)  1, for all t > 0. 

 
Thus,      Fz, u(t) = 1,  

 
i.e.,         z = u. 
 
Therefore, z is a unique common fixed point of A, B, L, M, S and T. 
 
This completes the proof. 
 
If we take B = T = I, the identity map in theorem 3.1, we get the following corollary. 
 
Corollary 3.1. Let A, L, M and S be self mappings on a Menger space  (X, F, t) with  continuous t-norm t 
satisfying : 
 

L(X)   S(X),  M(X)   A(X);                                                                                                    (3.1.6) 
 

One of S(X), M(X), A(X) or L(X) is complete;                                                                           (3.1.7) 
 

The pairs (L, A) and (M, S) are weak-compatible;                                                                      (3.1.8) 
 

for some , there exists k (0, 1) such that for all  x, y X and t > 0,                     (3.1.9) 
  
               (FLx, My(kt), FAx, Sy(t), FLx, Ax(t), FMy, Sy(kt))  0 

 
then  A, L, M and S have a unique common fixed point in X.   
 
Example 3.1.  Let (X, d) be a metric space where X = [0, 1] and (X, F, t) be the induced Menger space with 
Fp,q() = H( - d(p, q)), for all p, q  X and  > 0.  Define self maps L, M, A and S as follows: 
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4

0, x 0,
L(x) M(x) 5

1 x, otherwise

  
     

   
 

 
3

0, x 0,
A(x) 4

1 x, otherwise

  
    

   
 

 
1

0, x 0,
S(x) 3

1 x, otherwise.

  
    

   
 

Then L(X) = M(X) = 
1

0,
5

 
 

, A(X) = 
1

0,
4

 
  

  and S(X) = 
2

0,
3

 
 

 . 

 
Hence, the containment condition (3.1.6) is satisfied. Also, the pairs (L, A) and (M, S) are weak-compatible 

and A(X) is complete.  Further, for k = 
1

3
 the condition (3.1.9) is satisfied. Thus, all the conditions of 

Corollary 3.1 are satisfied and 0 is the unique common fixed point of the mappings A, L, M and S. 
 

4 Conclusion 
 
In view of proposition 2.1, t(a, b) = min{a, b}, theorem 3.1 is an alternate result of Pant et al. [1], reducing 
the semi-compatibility of the pair (L, AB) to its weak compatibility and dropping the condition of continuity 
in a Menger space with continuous t-norm. 
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