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Abstract
Structural health monitoring (SHM) is the automation of the condition assessment process of an
engineered system. When applied to geometrically large components or structures, such as
those found in civil and aerospace infrastructure and systems, a critical challenge is in designing
the sensing solution that could yield actionable information. This is a difficult task to conduct
cost-effectively, because of the large surfaces under consideration and the localized nature of
typical defects and damages. There have been significant research efforts in empowering
conventional measurement technologies for applications to SHM in order to improve
performance of the condition assessment process. Yet, the field implementation of these SHM
solutions is still in its infancy, attributable to various economic and technical challenges. The
objective of this Roadmap publication is to discuss modern measurement technologies that were
developed for SHM purposes, along with their associated challenges and opportunities, and to
provide a path to research and development efforts that could yield impactful field applications.
The Roadmap is organized into four sections: distributed embedded sensing systems, distributed
surface sensing systems, multifunctional materials, and remote sensing. Recognizing that many
measurement technologies may overlap between sections, we define distributed sensing
solutions as those that involve or imply the utilization of numbers of sensors geometrically
organized within (embedded) or over (surface) the monitored component or system.
Multi-functional materials are sensing solutions that combine multiple capabilities, for example
those also serving structural functions. Remote sensing are solutions that are contactless, for
example cell phones, drones, and satellites. It also includes the notion of remotely controlled
robots.

Keywords: SHM, structural health monitoring, autonomous sensing, distributed sensing,
multifunctional materials, remote sensing
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1. Distributed fiber optic strain sensors (FOSSs)

Branko Glisic

Princeton University, Princeton, NJ 08544, United States of
America

Status

Fiber optic sensors (FOSs) brought about transformative pos-
sibilities to structural health monitoring (SHM). Their chem-
ical and mechanical non-intrusiveness, and electrical passiv-
ity, resulted in excellent durability and long-term reliability
that exceed decades. Flexibility in installation (embeddable
and surface mountable), multitude of measurable parameters,
great measurement performance, and especially their ground-
breaking capability to enable both long-gauge and distrib-
uted sensors, resulted in global-scale and integrity monitor-
ing, which were important paradigm-shifts in SHM [1–5].
This section focuses on quasi-distributed and (truly) distrib-
uted strain sensors only.

The physical principles behind the most common dis-
crete FOSSs are Extrinsic Fabry–Perot Interferometry (short-
gauge only), intensity losses (long-gauge only), Michelson
and Mach–Zehnder Interferometry Surveillance d’Ouvrages
par Fibres Optiques (SOFO sensors—long-gauge only), and
Fiber Bragg-Grating spectrometry (FBG—both short- and
long-gauge) [1, 2]. While the first three technologies have
their great merits, they all require individual sensors to be dir-
ectly connected with reading unit, which limits their applica-
tion to sparse arrangement on the structure. Contrary, multiple
FBG sensors can be connected in series over single line which
enables quasi-distributed sensing (see figure 1). Physical prin-
ciples behind distributed FOSS are Brillouin scattering and
Rayleigh scattering (e.g. see [2, 3]) and the same sensors can
be used for temperature and vibration monitoring. In addi-
tion, within Brillouin scattering there are several possible sig-
nal processing techniques: optical time domain reflectometry
(BOTDR) or analysis (BOTDA) and optical frequency domain
reflectometry (BOFDR) or analysis (BOFDA), etc.

Long-gauge FOSS enabled accurate measurements in
inhomogeneous materials (e.g. concrete) and provided greater
spatial coverage per unit sensor, which in turn enhanced
sensors’ capability to detect damage but also enabled cover-
age of large volumes of structure with relatively limited num-
ber of sensors, and thus made possible global-scale SHM that
provided information on the structure as a whole (and not on
only a small, local, part of it, e.g. see [2]).

Distributed FOS are practically cables sensitive to strain,
temperature, or vibration at every point along their lengths.
They enabled monitoring of a 1D fields of these para-
meters along the entire instrumented lengths of structures.
They provide large number of measurement points, extens-
ive continuous spatial coverage of structure that tremendously
enhances the capability of damage detection, and simplify
installation and connectivity (see figure 1). Distributed FOS
enabled SHM at fine grain integrity scale for all types of struc-
tures but were proven particularly efficient in the cases of very

Figure 1. Schematic representation of (a) traditional discrete
sensing (with one-to-one sensor connections to reading unit),
(b) quasi-distributed sensing using FBGs interconnected over single
line (long-gauge sensors shown in figure), and (c) distributed
sensing of a large structure (modified from the slides of author’s
university course CEE 537 Structural Health Monitoring and [7]).

large structures such as dams, tunnels, long bridges, oil and
gas infrastructure, etc [1, 2, 6].

Current and future challenges

Depending on physical principle and hardware components,
various types of FOS technologies feature different chal-
lenges. Here we focus on those related to quasi-distributed and
distributed sensors.

For FBG sensors the main challenge is thermal compensa-
tion. FBG sensing element is simultaneously sensitive to both
strain and temperature, and thus each strain sensor requires
two FBG sensing elements—one coupled with structure, to
measure strain, and additional, kept uncoupled, for thermal
compensation. The use of two sensing elements per sensor
increases the cost, limits the number of sensors that can
be placed on the same line, and affects accuracy of strain
measurement.

For Brillouin technologies the challenges are dynamic
measurements and relatively long length of spatial resolution.
Spatial resolution is the length of distributed sensor over which
the measurement is averaged. It can be considered as equi-
valent to gauge length of discrete sensors and in commer-
cially available systems it is currently limited to approxim-
ately 20 cm. For Rayleigh technology the challenge is limited
length of sensor (currently up to 70 m for commercially avail-
able systems). In addition, a common challenge for all dis-
tributed FOSS are thermal compensation and deployment that
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Table 1. Best performances of the commercially available quasi-distributed (FBG) and distributed fiber optic sensors; note that, in general,
the best performances cannot be simultaneously achieved; adapted from [7].

Property
FBG (connected
in series)

Stimulated Brillouin
scattering

Spontaneous
Brillouin scattering

Rayleigh
scattering

Gauge length/spatial resolution 10 mm–2 m 0.2–5 m 1 m 10 mm
Min. spatial sampling ∼10 mm 100 mm 50 mm 0.65 mm
Max. number of sensors per
reading unit (w. channel
switch/multiplexer)

16 lines with ∼20
measur. points each

16 N/A 8

Resolution 0.2 µε 2 µε 2 µε 0.1 µε
Reproducibility (‘accuracy’) ∼1 µε ±2 to ±50 µε ±20 µε ±30 µε
Sensor range −5000 µε to

+7500 µε
±10 000 µε ±10 000 µε ±15 000µε

Max. sensor length Several km (one
line)

50 km 25 km 100 m

Temperature compensation Needed Needed Needed Needed
Measurement time or frequency 0.5 MHz 10 s to 15 min. 4–25 min. 250 Hz.

guarantees desired level of strain transfer, as they may need to
be installed over lengths in range of kilometers. Best perform-
ances of commercially available FBG, Brillouin, and Rayleigh
technologies are given in table 1 [7].

Besides these technology-specific challenges, a major com-
mon challenge of all types of FOS is elevated cost. Cost of
FOS technologies is on average higher than the cost of the
traditional sensor technologies, which makes them less eco-
nomically competitive despite of their sensing advantages. The
main reasons for elevated cost are the use of expensive com-
ponents in sensors and reading units to achieve high quality of
technology and the associated manufacturing processes. Nev-
ertheless, while the cost of FOS did not decrease over the last
quarter of the century, it did not increase neither (despite usual
inflation) and the difference in cost compared with traditional
sensors has been steadily decreasing. This trend is expected to
continue in the future as the acceptance in industry and number
of real-world SHM applications continue to grow.

Advances in science and technology to meet
challenges

In order to address the challenge of thermal compensation of
FBG sensors, in recent years researchers focus on finding com-
pensation functions applied to the measurement and compens-
ation FBG sensing elements (e.g. [8–10]).While this improves
accuracy of measurements, it does not reduce the number of
FBG sensing elements per sensor. To circumvent this chal-
lenge and reduce the cost while increasing the number of FBG
sensors per channel, new research on multi-core fiber FBG
sensors is ongoing in parallel (e.g. see [11, 12]). Here the main
idea is to use optical fibers with more than one core embedded
in cladding (e.g. 4 or more), and inscribe multiple FBG sens-
ing elements along each core, which will increase the num-
ber of sensing points per line and enable direct monitoring of
curvature, while keeping the number of thermal compensation
sensing elements limited.

To address the challenge of dynamic monitoring for
Brillouin-based sensing systems, solutions were looked for
at the level of reading unit hardware and signal processing

scheme. For example, the frequency of optical oscillator in
the Brillouin Optical Time Domain Reflectometer (BOTDR)
reading unit can be set to acquire backscattered power at the
maximum slope of the gain spectrum, so that all strain changes
resulting in Brillouin frequency shift are detected dynamic-
ally as changes in amplitude [13]. Another example, related
to Brillouin Optical Time Domain Analyzer (BOTDA), is to
replace time-consuming frequency sweeping with a single
pump pulse by using an optical chirp chain probe wave gen-
erated by a fast-frequency-changing microwave [14]. Sim-
ilar, spatial resolution can be reduced to millimeter level by
scientific breakthrough implemented at reading unit level.
For example, differential pulse-width pair BOTDA uses two
pump pulse signals with slightly different pulse widths to
get a differential Brillouin gain for strain measurement [15].
Another example is the Brillouin optical correlation domain
analysis where the interaction of two identically frequency-
modulated counterpropagating continuous waves (CW) is
used [16]. Finally, research shows that thermal compensa-
tion in distributed sensors can be achieved in single optical
fiber sensor by implementing advanced optical decoding
schemes such as Brillouin beat spectrum in large-effective-
area fibers [17]. To increase the range of Rayleigh-scattering
based sensors, the strength of signal at the end of the fiber
should be boosted, e.g. using various optical amplifiers,
Kerr effect, rectification of distorted signal, or other optical
techniques [18].

Finally, decreasing the cost of FOS can be obtained by
increasing the demand for FOS that would stimulate com-
petition and require mass-production and automatized man-
ufacturing. This would require further research in extension
of durability and long-term reliability of FOS, simplification
(semi-automatization) of installation, and creation of reliable
algorithms for an automatic long-term data analysis.

Concluding remarks

FOS revolutionized SHM by providing durable and long-
term reliable sensing, as well as novel long-gauge and distrib-
uted sensors, which in turn enabled instrumentation of large
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volumes of structures and opened doors for SHM at global
and integrity scales. Their development started in 1970’s and
their market readiness was achieved throughout 1990’s and
2000’s [7], when they also energized industry and sparked
creation of numerous new companies. Today, FOS technolo-
gies are well-established, mature, and widely implemented in
a range of SHM applications. Nonetheless, as shown in previ-
ous subsection, FOS continue to be an important research topic
of interest, aiming to overcome some of their challenges and
improve their performances (e.g. [8–18]). In addition, great

efforts are put in widening their applicability, e.g. for high
temperature monitoring, corrosion, intrusion, etc (e.g. see [19,
20]). Progress in material science and manufacturing techno-
logies, accompanied with developments in big data analytics
(machine learning), have potential to greatly extend the dur-
ability and long-term reliability of FOS to several decades
and provide algorithms for reliable data analysis of long-term
data and especially for identifying slowly evolving degrada-
tion phenomena. Thus, it is certain that FOS will play import-
ant role in SHM in the decades to come.
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2. Acoustic emission (AE) technologies for next
generation SHM

Leonard J Bond

Department Aerospace Engineering andCenter for NDE, Iowa
State University, Ames, IA, United States of America

Status

AE is the basis of an important class of passive nondestructive
testing (NDT) and SHM methods. An AE event is the spon-
taneous emission of sound pulses from materials subjected to
external stress, typically applied as a result of a loading pro-
cess and a sudden relaxation of stresses, most commonly form-
ing a crack or other degradation, within the material. These
events produce wave-fields that are, initially a combination
of longitudinal and shear waves, and which interact with the
structure to give Rayleigh, Lamb and other plate modes, which
depend on the material and geometry, and which are analog-
ous to the waves generated by an earthquake [21]. Such AE
monitoring is simple in concept, however its capabilities were
grossly oversold in the 1960’s and ‘70’s. Since then the sci-
ence base has been significantly expanded, including under-
standing source mechanisms [22]. The parameters that influ-
ence AE and its measurement are now well established [23],
and it had been demonstrated with many applications [24].
One major development was ‘modal AE’ where the physics
of AE generated become linked to analysis of Rayleigh, Lamb
and other plate waves [25]. In recent years two forms of com-
mercial instruments have emerged, those which just record
AE events and those which provide AE monitoring combined
with guided ultrasonic wave (GUW) measurements, in which
pulsed piezoelectric transducers are used in a sparse ultra-
sonic array [26]. AE in its two forms has now been success-
fully demonstrated in a diverse range of applications. These
generally form two families of problems, and these are (i)
proof tests and periodic inspections, involving a few hours
of testing, such as with a small pressure vessel or laborat-
ory sample loading, and (ii) long-term SHM of structures,
which may last weeks or months, and these are complicated
by challenges of transducer coupling, mounting, power sup-
ply and both sensor drift and damage [26, 27]. Early demon-
strations of AE included applications for the NASA Space
Station [28] and crack growth monitoring of a dissimilar metal
weldment at the Limerick Unit 1 Nuclear Power Plant [29].
This work formed the basis for the first American Society
of Mechanical Engineers (ASME) SHM code case. It has
also been used for composite materials and concrete struc-
tures, such as bridges and buildings, including a demonstra-
tion with loading taking a bridge structure to failure [30]. AE
most commonly uses piezoelectric sensors, but studies also use
micro-electromechanical systems (MEMS) [31], sol-gel and
optical fiber sensors [32], in some cases integrated into com-
posite materials. AE, including when integrated with GUW,
are one family of SHM sensors which can give data to be
combined with other parameters that include temperature and
stress [33]. In all cases AE requires continuous monitoring,

Figure 2. AE measurement process: source, sensor, signal capture
and analysis, source location and characterization.

and detection of what can be low amplitude signals, utilizing
a sparse transducer array, that generates voluminous quantit-
ies of data, which require analysis, in near-real time, to give
anomaly/crack locations, growth rate and a physical size that
can be used in prognostics analysis. These location and defect
data need to be a characterization that can provide locations for
localized inspection and resulting data that can be integrated
with that from periodic NDTmeasurements. AE has now been
used for detecting and monitoring damage in different struc-
tures and, for some applications, it has earned a reputation as
one of the most reliable and well-established of SHM monit-
oring techniques. The AE measurement process is shown in
the schematic figure 2. It is an efficient and effective techno-
logy used for fracture behavior and fatigue detection in metals,
fiberglass, wood, composites, ceramics, concrete and plastics.
It can also be used for detecting faults and pressure leaks in
vessels, tanks, pipes, as well as for monitoring the progres-
sion of corrosion in welding. There have been applications in
numerous engineering fields, including manufacturing, civil,
aerospace, nuclear and material engineering.

Current and future challenges

For short term proof tests and periodic inspections, which can
range in time from hours to at most a few days, using mostly
commercial systems with an array of AE sensors, the general
concepts and fundamental wave propagation, Rayleigh waves
on thick material, and typically an assembly of guided (Lamb)

7



Meas. Sci. Technol. 34 (2023) 093001 Roadmap

modes in thinner plates [21], are well established. The chal-
lenges or opportunities are to be found with: (i) better sensors,
that give improved signal-to-noise, (ii) for new problems,
better matching of transducer bandwidth to structure-guided
wave (GW) propagation characteristics, (iii) optimization of
sensor sparse array numbers and locations to ensure coverage
and (iv) new and improved data processing. This can include a
variety of AI tools, particularly to match data characteristics to
AE event signatures [34]. For long-term monitoring the initial
problem, particularly on large structures, exposed to natural
forces and the effect of weather (rain, snow, ice, wind, temper-
ature), is to provide a system with adequate robustness, power
supply for pre-amplifiers, coupling of sensors to the structure
and reliable data transmission. Both battery andwired/wireless
technologies have been deployed. However, for example, for
sensors used on an off-shore oil rig, surviving the first storm
is a critical benchmark! When given a robust sensor system
that is well designed, and deployed, the biggest challenge is
then data capture, recording and near-real-time analysis. To be
useful an AE system must give reliable identification of both
feature size and degradation growth and the location of these
cracks or corrosion, that can then enable more complete char-
acterization using conventional NDT tools. For AE—GUW
systems these have the same fundamental system issues as
already mentioned. In addition, it is necessary to optimize AE-
GUW transducer parameter selection and to match these to the
structure wave propagation characteristics. An AE-GUW sys-
tem is significantly different, in terms of transducer character-
istics, from those used in GW generation, that does not incor-
porate an AE capability [35, 36]. There are a diverse range of
types of AE sensors: including piezoelectric, optical fiber and
MEMS. Each type has its own detection modality, as well as
bandwidth and sensing mechanism. The output signals can-
not be simply treated as voltages that can be compared. Much
work is needed to better understand the inter-relationships of
the data from these various classes of sensors. In the case of
optical fiber systems, that are seeing increased use in com-
posite structures their impact on the mechanics of the struc-
ture, as well as the cost of such instrumentation remain chal-
lenges. Across all classes of AE measurements it is critical
to understand the material—wave propagation and attenuation
characteristics, in plate mode propagation, and required sensor
spacings to ensure needed coverage and sensitivity (either near
a local feature or for global deployment). With whatever array
is implemented it is then necessary to ensure adequate signal
digitization (A/D) in amplitude and time, bandwidth and sens-
itivity for these transient phenomena and then data manage-
ment (storage and information extraction). In quantification of
AE SHM data (i.e. crack or other anomaly characterization)
that can be integrated with a characterization obtained dur-
ing periodic inspections, using ultrasonic testing (UT or other
nondestructive evaluation (NDE) methodology there is a need
to provide a common metric or degradation characterization
for use in prognostics [37]. Finally, for some SHM implement-
ations, such as those in nuclear power plants, there is a lack of
regulatory relief when is SHM installed. Periodic NDT is still
required to be performed, even when SHM data are available.

Advances in science and technology to meet
challenges

In SHM, including AE and AE-GUW, it has seen less imple-
mentation than may in the community would have hoped [37].
There are three critical issues: (i) sensor selection, (ii) system
integration and (iii) data analysis, in near-real-time and sens-
itivity, to give characterizations that can be integrated with
that given by periodic NDT inspections. Many of the major
application areas have faced challenges: in nuclear power
SHM is routinely used for rotating machinery [38], but its
use for passive structures is more limited. Developing the sci-
ence, instrumentation and data processing to enable SHM/AE
measurements to reliably provide metrics that can be used in
prognostics (remaining life) assessments is still challenging.
In terms of instrument sensitivity for a contact piezoelectric
sensor, which gives the highest sensitivity among the various
transducer technologies, at 1 MHz the minimum detectable
displacement is 2 × 10−17 in units of m Hz−2 [39]. Optical
fibers can be integrated into composite structures (but can
cause local stress anomalies). Reducing the complexity and
cost of this technology is a first step. A second is to provide
enhanced sensitivity of fiber-based Bragg sensors, and estab-
lishing direct comparisons with the data given with piezo-
electric sensors. With the growing interest in AE—GUW sys-
tems, although use of AE sensors as transmitters is not new,
developing better understanding of the physical acoustics for
the sensors, when acting as transmitters, and how these AE
transducers need to be matched to structure characteristics
for GUW generation and detection is ongoing. For AE-GUW
better understanding of the impact of transducer spacing is
needed. Establishing the relationships between the different
classes of sensors that are available for AE sensing needs atten-
tion. Demonstrating performance evaluation against standard
ball-drop and pencil-lead-break standard sources is ongoing.
For all AEmeasurements the biggest challenge is in signal pro-
cessing, which is always a key problem in damage assessment
of components andmaterials.Muchwork is needed to improve
parameter analysis and waveform analysis in AE signal pro-
cessing. Features to be extracted, particularly when used for
AE-GUW, needs standardization.

Concluding remarks

AE is one of the pillars of passive SHM, which is now being
complemented by AE-GUW measurements. AE is in general
good at detecting something occurring: i.e. crack growth, par-
ticularly in shorter term measurements such as pressure proof
tests. Longer term AE monitoring is often faced with sys-
tem resilience and robustness issues and systems that cannot
adequately survive service in harsh environments. Data collec-
tion, management and processing, to give required and needed
characteristics remains difficult, particularly given the poor
signal-to-noise for many AE field implementations. There are
opportunities for new sensor classes, but standardization of
response characteristics is needed.
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3. Radiofrequency (RF) sensors for SHM

Mauricio Pereira and Branko Glisic

Princeton University, Princeton, NJ, United States of America

Status

The need to detect and localize critical damage of minute
dimensions (e.g. millimeter and sub-millimeter cracks) in
large structures (e.g. tens and hundreds of meters) is a fun-
damental challenge in SHM of civil infrastructure. Commonly
used sensors, such as point strain sensors, are unable to reliably
detect, quantify, and localize damage at moderate distances
from their installation point [40]. Unidimensional distributed
or quasi-distributed sensors (e.g. based on fiber optics) ameli-
orate spatial resolution but still suffer from limited spatial cov-
erage. These limitations motivated the development of novel
strain sensors with increased spatial resolution and coverage,
such as two-dimensional strain sensors [41]. A subsequent
research advancement would be to create innovative three-
dimensional distributed sensors. However, most of these novel
sensors require tethering for power, data acquisition (DAQ),
transmission, and storage, leading to costly and labor-intensive
installation andmaintenance processes [42], especially if sens-
ing throughout the material volume is desired. This makes dif-
ficult the universal deployment of tethered sensors in large
structures. To achieve widespread application of SHM to civil
infrastructure, low cost, scalable, high-resolution, pervasive
monitoring throughout (and sometimes beyond, for circular
construction) the operational life of the structure is needed
[43]. An approach to achieve this ideal scenario is the deploy-
ment of wireless sensors that bypass the need for tethering
and simplify the installation process, with the potential of
pervasiveness and scalability [44]. A major challenge with
wireless sensors concerns its powering, typically provided by
limited-life batteries. An alternative approach is the use of
passive RF identification (RFID) sensors that are powered
by an external exciter. RFID-based sensors are low cost, can
achieve high granularity, and operate over the service life of
the structure [45]. While RFID was primarily designed for
asset tracking, it is possible to design its antenna so that its cir-
cuit and/or communication channel properties are correlated
with quantities of interest for SHM, such as strain, humidity,
and temperature, effectively rendering them RF sensors. For
example, a common method is to measure the resonant fre-
quency shift in the circuit as the antenna deforms. Significant
research was devoted to the development of RF-based sensors
for SHM, with accelerated pace since the mid-2000’s [45],
corrosion [46], displacement [47], and cracking. For example
[48], provides wireless millimetric crack movements based on
a piezoelectric sensor (see figure 3). Sensing environmental
factors, such as temperature [49] and moisture [50], is also
possible and fundamental for the long-termmonitoring of civil
infrastructure so that damage can be distinguished from envir-
onmental effects.

Figure 3. Passive RFID-based masonry cracking sensor proposed
by [48].

Current and future challenges

Challenges to the pervasiveness of current RF sensors are
the limited reading range and its discrete nature. An exciter
must be present nearby because passive RF sensors require
an external power source. The distance between the sensor
and the exciter can range from a few centimeters to several
meters depending on the frequency of operation. However,
high-resolution sensing requires high-frequency RF sensor,
which limits both how far the RF exciter can be and how deep
in the material the sensor should be embedded [42, 45]. The
limited reading range can also cause communication, sensing
accuracy, and reliability issues, and must be carefully investig-
ated. One emerging approach to improve reading reliability is
the deployment of multi static configuration systems in which
several readers are available, or the deployment of multiple RF
sensors [45].

Current RF sensors typically provide point measurement,
and thus cannot detect damage away from their position or
from the reader-sensor electromagnetic wave path. This is
addressed by the deployment of multiple sensors, with thou-
sands envisioned for some applications. However, the deploy-
ment of thousands of sensors will generate a data throughput
issue because of the current RF-sensing paradigm, based on
several sensors to few, usually one, readers topology. This
is a concern for wireless sensor networks (WSNs) in gen-
eral. An approach to address this issue in WSNs is to lever-
age the embedded computational power available in the wire-
less sensors to perform in-network data processing and dam-
age detection, hence removing the need for data transmission
to a central data processing node [42]. Thus, energy efficient
embedded computation is another contemporary challenge for
RF sensors.

The antenna design for RF sensors is a current chal-
lenge too, as it requires simultaneously satisfying competing
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Figure 4. A comparison between (a) traditional RFID systems, (b) novel tag-to-tag RFID networks, and (c) translation of tag-to-tag RFID
network in dense dispersive network of RF sensors for SHM purposes.

requirements for communication (e.g. range, robustness)
and sensing (e.g. high-resolution, sensitivity) with the same
antenna. Also, the RF sensor antenna is often designed to
match the RF chip in a reference state, which may not occur
if the chip’s state depends on the structure’s state, which is
continuously changing due to damage or ordinary environ-
mental changes. Furthermore, for sensors to be deployed in
large quantities, they should be miniaturized to not interfere
with the mechanical properties of the monitored structure, and
be able to detect minute defects, but miniaturization reduces
the radiation efficiency of the antenna [45] further jeopard-
izing reading range. Hence, miniaturization and testing under
environmental influences represent futuremajor challenges for
real world RF-sensing application.

Advances in science and technology to meet
challenges

Current reading range are limited by the RF sensor sens-
itivity, and development of integrated circuit technology is
expected to aid in increasing the reading range [45]. An
innovative solution to address the read range limitation is the
use of RF sensors that can communicate with each other,
effectively generating a sensor-to-sensor (or tag-to-tag, see
figure 4) communication [51–53]. This approach meets mul-
tiple requirements for the ideal SHM, as it opens the possib-
ility of pervasive, high-resolution volumetric sensing. Since
each sensor only needs to communicate with neighboring
sensors, there is the possibility of using high frequency RF for
high-resolution tag-to-tag communication while maintaining
material penetration by using lower frequency for tag network
powering. For example [51], demonstrated the application
of such an approach towards sensor tracking, with poten-
tial for sub millimeter resolution. Such emerging RF-sensing
paradigm also addresses the removal of the exciter interference
[54, 55].

As previously mentioned, the deployment of thousands
of sensors will generate enormous volumes of data. The
current sensing paradigm acquires and transmits the data,
but it has been shown that data transmission is one of the
most power consuming tasks in a wireless sensor [42]. One
strategy to address this is the use of embedded computation.
Hence, performing data analysis at the sensor embedded

computational core is of interest to reduce the excessive
amount of data, render energy efficient RF sensors, and
achieve fully automated SHM. Innovations in alternating cur-
rent computing can be a pathway to enable energy-efficient
embedded computing power in RF sensors [56].

Still, backscattered-based RF sensors must relate the meas-
ured channel characteristics (e.g. amplitude and phase) to the
measurands of interest of SHM (e.g. displacement, humid-
ity, porosity). Complete physics-based modeling of such phe-
nomena is difficult, and wide variations in real-world environ-
ments and material properties may render the first-principles
approach infeasible. Thus, it is expected that RF-sensing
will require advanced data-driven modeling. Hence, advances
in machine learning towards data driven SHM are expec-
ted to enable material characterization and/or damage detec-
tion, quantification, and localization based on RF channel
characteristics. Advances in compressive sensing [57] and
learned data compression [58] are also relevant for energy
efficiency.

For practical deployment of RF sensors, manufacturing
must be kept low cost and reliable, and miniaturization should
be achieved for pervasiveness [59]. Therefore, advances in
antenna manufacturing, such as antenna printing technology
on various substrates, and simplified antenna design will be
instrumental to the realization of pervasive RF sensor techno-
logy for real-world SHM of civil infrastructure.

Concluding remarks

The research in RF sensors for SHM purposes has been in
active development since the mid-2000’s and significant chal-
lenges still exist in efficient power usage, miniaturization,
long-term durability, and feature extraction. RF sensors show
great potential for SHM due to their lower maintenance and
installation cost in comparisonwith tethered sensors, and espe-
cially for their potential application as large networks that
can provide embedded computing and automated SHM, and
enable scalable, pervasive, low-cost, high-resolution, sensing
capable of addressing the fundamental antithesis of detect-
ing minute damage over large structural volumes. The emer-
ging paradigm change of true wireless sensing offered by RF-
based sensors, which contrasts with the prevailing view of
wireless sensors as the nexus of transduction, computation,
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and communication, creates exciting new opportunities for
SHM.AsRF-based dense sensor networks become truly active
by employing RF channel characteristics between the sensors
to interrogate the material, RF-sensors hold the potential for
low-cost, long-term durability, and volumetric pervasiveness.
Low-cost and miniaturization will be enabled by advances
in antenna manufacturing. Advances in signal processing and
machine learning hold great promise in advancing data com-
pression, automated SHM via embedded algorithms, and data
storage, as well as improved damage detection algorithms and
feature extraction.
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Recent advancements in sensor and computer technologies
have led to a rapid development of SHM methodologies,
providing useful diagnostic tools for ensuring integrity and
safety, detecting damage, and evaluating performance deteri-
oration of civil infrastructures. Major issues associated with
deployment of current SHM systems on a massive scale are
prohibitive costs of sensors, installation, maintenance, cabling
issues, wireless communication, power consumption, etc. To
tackle these issues, in the last decade several research efforts
have been devoted on the possible utilization of smartphones
in SHM procedures, due to some unique features.

Modern smartphones are ubiquitous devices instrumented
with various sensors such as a barometer, gyroscope, acceler-
ometer, camera and magnetometer, and have significant on-
board computing capabilities [60]. They are equipped with
batteries that are charged by their users and have storage in the
order of gigabytes. Moreover, smartphones are supported by
mobile operating systems and wireless communication hard-
ware that can be used for field data collection and uploading
real-time data to a server via Wi-Fi and 5G networks. Clearly,
these characteristics constitute an irreplaceable opportunity
for developing portable and low-cost SHM systems, that could
be easily implemented on a massive scale.

Notably, first studies [60, 61] on the use of smartphones
for civil engineering applications, are related with pavement
condition assessment, to allow for a continuous evaluation of
road conditions and proper maintenance operations. Most of
the existing studies in this area are focused on detecting road
bumps and anomalies, while pavement roughness estimation is
less investigated. Pioneering research on applications of smart-
phone technologies for SHM in structural engineering field
was carried out in [62], where classical peak-peaking method
has been tested on the frequency response function determined
on the time series data recorded accelerations of smartphone
devices, and in [63, 64] where a cloud-SHM method has been
developed based on smartphone data, for estimation of cable
force test and natural frequencies of Xinghai Bay bridge in
China. Further, the versatile usage of smartphones in monitor-
ing a full-scale building was explored in [65] where an uncon-
ventional idea to condition monitoring of a full-scale building
was presented considering the Millikan library at California
Institute of Technology. Since these initial studies, additional
research efforts have been devoted to the assessment of smart-
phone technologies for SHM applications, comparing the reli-
ability of this equipment to standard monitoring set-up, or
focusing on novel procedures or algorithms adapted for issues
pertaining to these devices. In this regard, recent comprehens-
ive literary review can be found in [60, 66, 67]. Notably, most
of the studies in the literature have focused on the use of

accelerometers embedded in smartphones as a tool to monitor
structural conditions. In principle, however, other sensors may
be employed if necessary. For instance, recently smartphone
cameras have been used to measure displacements and per-
form structural modal analysis [68, 69]. It is worthmentioning,
however, that the research on this topic is still in its infancy,
and additional efforts are required to lead this technology to a
more mature stage.

Current and future challenges

To date, studies on smartphone-based SHM techniques are
mostly focused on application to bridge condition assessment
[70, 71], where the use of smartphone has shown to be a
promising alternative to up-to-date SHM technologies. In this
regard, some of the main issues related to application of smart-
phone for buildings SHM is associated with the deployment of
these devices in buildings. These includes [65]:

• accurate location determination within the structure;
• possibility to rigidly connect the phones to a number of sig-

nificant points on the structures for a reasonable amount of
time, to acquire sufficient data for structural dynamic iden-
tification;

• determination of devices’ orientation and height (floor
level).

On the other hand, some of these issues can be circumven-
ted in bridge health monitoring. In this case, in fact, vibration
data collected via the embedded sensors in common smart-
phones can be geo-localized using the global positioning sys-
tem (GPS). Further, cell-phone orientation and height do not
represent and issue, since generally only bridge’s vertical
accelerations data are required, while phones’ height is usu-
ally constrained by the geometrical configuration of common
bridges.

In any case, however, accuracy and reliability of sensors,
especially MEMS accelerometers, in common smartphones,
represent to date the major obstacle to the development of this
technology [71, 72]. The resolution of smartphone accelera-
tion measurements is not as precise as those of conventional
sensors, and different generations of smartphones provide dif-
ferent acceleration measurement resolutions, which in some
cases may not be precise enough to capture smaller and ambi-
ent vibration data. For instance, some Samsung models and
the iPhone 6 incorporate an InvenSense MEMS accelerometer
model MPU-6500 with sensitivity 16 384 LSB g−1 and out-

put noise level of 300 µg
√
Hz

−1
[65]. For comparison, note

that in [73] MEMS accelerometers M-A351 by Epson have
been specifically used for SHM purposes, with sensitivity
of 16 666 LSB g−1 and a much lower output noise level of

0.5 µg
√
Hz

−1
. In this regard, some further data on MEMS

smartphone characteristics are reported in [65]. Notably, how-
ever, often the characteristic of the MEMS accelerometers
embedded in smartphones are not provided. Thus, it is not
even possible to determine MEMS accelerometers sensitiv-
ity and noise level, whose values are crucial to record reliable
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Figure 5. Test vehicle and the equipment used: (a) Piezoelectric accelerometer and relative setup. (b) Smartphone with a MEMS
accelerometer [80].

and accurate data. Thus, an assessment of the accuracy of the
recorded accelerations is generally provided by comparison
with the data obtained using classical piezoelectric accelero-
meters, often employed in vibration-based SHM.

Further, sampling frequency rate is not often constant in the
same device, and generally differs in different phones. Further,
smartphone data are typically corrupted by two main types
of sensors faults, i.e. drift and spikes [71]. These errors seem
to be strongly correlated with the phone CPU usage fluctu-
ations. Specifically, several factors, such as heavy multitask-
ing and input/output loading on smartphones, may lead to fluc-
tuation in CPU usage and unstable measured signals. These
clearly represent points that need to be appropriately taken into
account in a post-processing phase of the data. Nevertheless,
with improvements in MEMS, newer smartphone generations
will provide enhanced measurement resolution, thus increas-
ing the possibility of implementing smartphone-based SHM
techniques in the future.

Finally, compared to standard implementation, using for
instance fixed accelerometers on the structure connected to a
single computer for DAQ, recorded signals coming from a net-
work of smartphones cannot be generally precisely synchron-
ized in time, and may be even subjected to missing data [74]
occurring for instance as a result of failed communications or
the required use of a device by the owner during the acquis-
ition. Therefore, specific and advanced structural dynamic
identification methods are needed to appropriately deal with
SHM implementations based on smartphone technology.

Advances in science and technology to meet
challenges

The current status of the research suggests that reliability
and accuracy issues will be resolved in the relatively short
term through the continuous development and advancement
in sensor technology and MEMS accelerometers accurateness
which are implemented in up-to-date smartphones [71].

The next generation Smart Cities will be heavily depend-
ent on the integration of smart infrastructure with information
and communication technologies and the internet of things

(IoT) [60, 67]. Through IoT connectivity, smartphones have
an ability to facilitate mass participation and information gath-
ering, as illustrated by mobile applications, whose service
is dependent on individual user contributions (e.g. Google
Maps). Clearly, multisensory smartphone information collec-
ted using a crowdsourcing sensing approach can be an asset
for intelligent decision making in smart cities [75]. Mobile
crowdsensing is based on active participation of citizens in
collecting appropriate sensor data using their smart devices.
Over the last few years, this low-cost or no-cost data collection
approach has grown considerably due to the widespread use
of internet, smartphones, and mobile networks [75]. Recent
studies on the use of multiple different smartphone-based data
for SHM application, have demonstrated that in an average
sense, signal features of crowdsourced smartphone data can
more closely match estimates from a higher quality acceler-
ometer, thus assessing the possibility of overcoming fidelity
problems by aggregating heterogeneous data sets [72].

Although, crowdsourcing such data presents an opportun-
ity to estimate the modal properties of potentially thousands
of bridges, cost-effectively, there is also a need to study the
synchronization problem posed by multiple sensors with inde-
pendent and potentially irregular sampling properties. How-
ever, several research efforts are now devoted to these chal-
lenges and promising methods have been already presented
and tested to cope with these issues [74, 76]. In this regard,
pioneering approaches are nowadays based on the possibil-
ity of implementing SHM procedures using a mobile sensor
network paradigm based on the use of smartphones. Clearly,
while in fixed sensor networks, each sensor is dedicated to
a particular point on the structure, mobile sensors can meas-
ure vibrations from multiple structures, using the same equip-
ment, within a short time frame. In essence, a single mobile
sensor can provide information comparable to that provided
by numerous fixed sensors, without added cost. For instance,
it has been shown that the first few frequencies of a bridge,
and in some cases even mode shapes, can be detected from
smartphone and vibration sensors mounted in moving vehicles
[77–80]. In this regard, in [80, 81] vehicle vertical acceler-
ations have been employed to identify the main frequencies
of the Interchange 12 bridge in Dubai (UAE). In this case,
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the experimental set-up comprised both a single piezoelec-
tric accelerometer (PCB-models 393B04) and an iPhone 11.
These were positioned close to the central axis of the car, to
record the vertical acceleration of the vehicle (Tesla model 3
2021 edition) moving over the structure several times (figure
5). These methods, referred to as Vehicle-Bridge-Interaction
procedures, are an emergent and promising active field of
research, aiming at overcoming issues pertaining to variables
encompassing the vehicle system, vehicle route, road profile,
and the vehicle velocity that undermines the accuracy of these
approaches.

Concluding remarks

Modern smartphones, having significant computational
power, large memory resources, built-in batteries, processor
units, and a variety of MEMS sensors, offer a promising
hardware and software environment for SHM applications.
The onboard computational and communication capabilit-
ies, built-in sensors, and easily programmable functionality
of smartphones simplifies collecting information on existing
infrastructures, thus offering novel and ubiquitous structural

response measurement opportunities, with extremely low
initial and running costs. However, current challenges per-
taining to the accuracy of the embedded sensors, today limit
the vast implementation of smartphone-based SHM systems.
The sensors that come standard in smartphone models were
not designed for scientific applications, and accelerometers
in smartphones are subject to some basic signal processing
problems, which can limit overall reliability. Nonetheless, the
continuous advancements inMEMS technology will lead soon
to accuracy level comparable to standard devices, and recent
studies have already proved the potential of SHM approaches
based on the use of smartphone data, especially when part
of a crowdsourcing campaign. It is therefore evident that the
technology is already available, while several research efforts
still need to be focused on defining novel techniques of data
processing and SHM approaches specifically designed for
overcoming the issues posed by the use of smartphone data.
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WSSs have seen rapid development and wide deployment over
the past two decades for SHM. They are cost-effective and
easy-to-deploy compared to the wired counterparts, and hence
have a great potential to achieve the promise of pervasive
sensing [82]. There are several important topics/challenges for
the development ofWSS. For a singleWSS, one of the biggest
challenges is the power constraint. Recent efforts include sol-
ar/wind energy harvesting and energy-saving mechanisms for
sensor operation [83]. Multimetric sensing is another import-
ant aspect, which employs various types of measurands to
provide richer multiscale information for more accurate SHM.
Acceleration and strain are the two most frequently adop-
ted sensing information [84]. In addition, edge computing
can transform raw data into actionable information through
onboard data processing, such as signal filtering and sys-
tem identification, addressing data inundation and reducing
transmission workload for wireless sensor nodes [85]. For
WSS networks (WSSNs), time synchronization is essential
to ensure synchronized DAQ among sensor nodes. Various
time sync protocols have been developed and implemented in
WSSN [86]. Additionally, wireless data transmission is gener-
ally unreliable and time-consuming. A growing effort is made
for real-time DAQ for WSSNs, addressing radio interference
while enabling real-time applications [87]. Decentralized data
processing is critical for a multi-layer WSSN, in which raw
data is processed by coordination of neighboring sensor nodes
to improve the scalability of sensor networks. A typical study
adopting this concept is system identification [88]. As the
number of networks and devices grows, efficient and secured
storage and analytics of a large amount of data are necessary.
Researchers have discussed using database management sys-
tems and adopting the cloud infrastructure as scalable access
to data visualization and analytic platforms [89]. For long-
term deployment, WSSNs are generally susceptible to various
issues affecting their reliability. Effective and real-time sensor
fault detection is crucial, which has gained a surge of research
interest in various fields [90]. Nowadays, WSS is considered
an essential component of the IoT networks for civil infra-
structure monitoring and management. To be upgraded for this
purpose, these topics are still important and require extensive
efforts in the near future.

Current and future challenges

An emerging trend has been invoked to upskill wireless solu-
tions to replace wired counterparts while still holding the
advantages of cost-effectiveness and data compression in this
process, especially in the context of IoT networks. To this end,
the above topics should be re-examined, and challenges are
identified. In the context of a single WSS, for sudden event
monitoring, the monitoring system must be always-on to cap-
ture unpredictable events while avoiding depleting batteries
quickly. Event-triggered sensing is a promising solution, but it
may miss transient structural responses. For multimetric sens-
ing, a more comprehensive range of sensing capabilities is
desired, which requires a flexible sensing platform consisting
of different interface boards that can integrate various types of
sensors. The main challenge for edge computing is the limited
resources in WSS. These constraints make the WSS difficult
to host complex applications. On the other hand, for WSSNs,
synchronized clocks do not guarantee synchronized data due
to uncertainties in software processing time and low-quality
crystals. The resulting synchronization error leads to incor-
rect SHM application results. For real-time wireless DAQ,
there are twomain challenges: scheduling conflicts for embed-
ded operating systems within a WSS and radio interference
for concurrent transmission among multiple WSSs. As a res-
ult, most real-time DAQs have limited network throughput.
The main challenge of adopting decentralized data processing
in WSSN is to optimize resource utilization among different
nodes, maintain a stable multi-layer network topology, and
realize reliable multi-hop communication for large-scale net-
works. Applying cloud computing and management to SHM
brings up two major challenges: a systematic framework to
handle multimetric data and practical computation techniques
for handling big data analytics. For long-term deployment,
although traditional signal processing techniques can detect
sensor faults, significant human interventions are involved.
Differentiating between the occurrence of events and errors
is also a challenging issue in sensor fault detection.

Advances in science and technology to meet
challenges

To address the above-mentioned challenges, several latest and
significant advancements are summarized here. For event-
triggered sensing, a demand-based WSS is developed to
provide a universal solution [91] (figure 6), in which a pro-
grammable event-based switch is designed to automatically
turn on/off a high-fidelity sensor platform without missing
data. Advances for multimetric sensing include developing
sensor boards to integrate high-sensitivity acceleration and
strain, GPS sensor, pressure sensor, and capacitance-based
sensing skin for crack monitoring [92]. The state-of-the-art
wireless sensors can achieve resolution of <10 µg for accel-
eration measurement and <1 µε for strain measurement. In
the case of edge computing, efforts are devoted to the co-
design of hardware, software, and algorithms, such as the
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Figure 6. Real-time sudden-event monitoring system using
Xnodes, containing on-demand sensing prototypes, real-time time
synchronization, and real-time data acquisition.

dual-core Xnode supporting preemptive multitasking [93] and
lightweight onboard reference-free displacement estimation
[94]. In the scope of WSSNs, for time synchronization, a
two-stage approach is developed through both linear and non-
linear clock drift compensation and resampling to achieve
30 µs accuracy in data synchronization [95]. Furthermore, an
improved version, called post-event time synchronization, is
developed to reduce the latency of sudden-event monitoring
to around 0s, compared with around 4.5 s of state-of-the-art
solutions [96]. For real-time DAQ, a staggered time division
media access (TDMA) is developed to enable high-throughput
wireless acquisition. Subsequently, an adaptive TDMA sup-
ported by preemptive multitasking and real-time time syn-
chronization is proposed to increase the throughput of up to
115 kbps [97]. To improve decentralized data processing, a
power-optimized and reprogrammable system is developed,
capable of remotely specifying and optimally allocating sensor
nodes’ computational operations on the fly [98]. In addition,
multi-hop radio transmission is carefully handled by slot seg-
menting scheduling and multichannel data communication
algorithm [99]. Note that, the radio transmission distance is
varied in different sensor platforms, and 1 km line-of-sight dis-
tance is achieved in several next-stage wireless sensors. Mul-
tiple frameworks of domain-specific cloud platforms for SHM

Figure 7. Data distribution from the sensor network to MySQL
(relational database) and InfluxDB (time-series database) [100].

have been proposed, such as a cyberinfrastructure platform
for SHM, adopting bridge information modeling and NoSQL
database, and a railroad bridge monitoring framework imple-
mented with time-series and relational databases (figure 7)
[100]. For long-term reliable deployments, hardware improve-
ment (e.g. sensor board) and software advances (e.g. reliable
network operation) should be achieved. The continuous rise
in computational power and demonstrated efficacy in various
fields motivates deep learning to minimize human intervention
[101].

Concluding remarks

WSSs are important measurement technologies for SHM, with
the advantages of low cost and easy deployment over the wired
counterparts. Through research and development, WSS has
been gaining momentum to release its full potential for civil
infrastructure monitoring and management. The main topic-
s/challenges for WSS development include sensing schedul-
ing, multimetric sensing, edge computing, time synchroniz-
ation, real-time DAQ, decentralized data processing, cloud
computing/management, and long-term reliability. Address-
ing these challenges is essential to upskilling the functional-
ities of WSS as a critical component of IoT networks for civil
infrastructure.
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Sensing skins emerged from advances in conductive polymers
and flexible electronics that induced sensors with the neces-
sarily compliance to be deployed over large and sometime
complex geometries, whether they are deployed through adhe-
sion or direct painting. A key sensing principle is that local
deformations are transduced into a measurable state. Often,
this state is either electrical resistance or capacitance, but can
also be chromatic, piezoelectric, or resonant features [102].
The example of a polymer capable of transducing strain into
a measurable change in capacitance is shown in figure 8(a).
It consists of a soft elastomeric capacitor, here measuring
75 mm× 75 mm, constituted by a layered structure forming a
parallel plate capacitor [103].

The popularity of sensing skins is mostly attributed to the
biomimicry of biological skins, where the intent is to enable
localized sensing over a global area. This in essence creates a
very dense sensor network than can be deployed over strategic
locations of the monitored structure to extract high-resolution
measurements. Figure 8(b) conceptually illustrates an integ-
rated sensing skin system used to monitor strain on a wind tur-
bine blade [104]. Here, the layout consists of an arrangement
of soft strain gauges with different resolutions. The sensors
are deployed through a flexible substrate sheet with embed-
ded analog-to-digital converter integrated circuits. A data bus
carries digital data to a wireless transmission node for further
processing.

A sensing skin-based measurement strategy is ideal to
discover local damages, for instance cracks, compared with
traditional solutions that would be too spatially localized to
conduct the task reliably or within an acceptable level of con-
fidence. It can also be used to reconstruct strain fields over
large surfaces to understand the kinematics of deformations,
useful when working with digital twins or to simply detect
abnormal deformations. Examples of sensing skins developed
for SHM applications include nanotube-based sheets [105],
flexible electronics comprising printed resistors and integrated
circuits [106], and stretchable GW sensor networks [107].
Yet, the enthusiasm for sensing skins goes beyond SHM, with
many notable applications in medical and wearable sensors
[108, 109]. An important promise in sensing skin techno-
logy is based on easy large-scale deployments, but there exist
critical challenges impeding their widespread deployments.
These challenges are discussed in the next section.

Current and future challenges

One critical challenge impeding the deployment of sensing
skins is the important trade-off that exists between fabrication
costs and electromechanical sensitivity. A good example of
such a trade-off is in the fabrication of strain-sensitive materi-
als based on piezo-resistivity, where materials are doped with
conductive micro- or nano-particles to reach the electrical per-
colation threshold. Often, the conductive particles of interest
are carbon nanotubes because of their ultra-high electrical
conductivity. These yield substantial piezo-resistive proper-
ties using low concentration levels, yet they are expensive to
acquire and difficult to mix, resulting in important fabrica-
tion costs. Conversely, carbon black particles can be adop-
ted for their low costs and ease of dispersion, yet they yield
low piezoresistive properties and require large concentration
levels.

Another challenge is in the obtention of necessary mech-
anical and environmental robustness to ensure long service
life. Mechanical robustness may be provided through mech-
anical compliance, for instance by using highly stretchable
polymer matrices that can sustain large local deformations
induced by cracks. However, the use of stretchable sub-
strates also requires stretchable interconnects, which fur-
ther complicates the fabrication process [110]. Alternatively,
the compliance is sometime limited to the use of a flex-
ible, non- stretchable substrate with the intent to transfer
materials damage to the sensing skin based on the designed
sensing principle, as done in [106]. Environmental robust-
ness is often overlooked for sensing skin technologies at
an early development stage yet requires important consid-
erations when using polymer substrates designed to be left
exposed in harsh environments. This can be done by updat-
ing designs with necessary micro- or nano-particles after
accelerated aging test assessments [111], or through strategic
packaging.

Importantly, sensing skin technologies need to be deployed
in the form of integrated systems capable of sensing and
interpreting useful information leading to a decision sys-
tem. The example of an integrated SHM system is shown
in figure 9. A sensing skin is fabricated from individual soft
elastomeric capacitors deployed onto the welded connection
of a full-scale bridge girder with some of the sensors folded
over the corner (figure 9(a)). Data collected from the sensors
were fused in a crack growth index (CGI) and assembled
in the form of CGI maps. The CGI is a single value that
relates proportionally to the fatigue crack size, as plotted
in figure 9(e). Figures 9(b)–(d) report the CGI maps for a
fatigue crack that grew from an initial location (figure 9(c))
to a final location (figure 9(d)), exhibiting a clear change
in the CGI maps with the yellow color (higher CGI val-
ues) indicating the crack location. In this particular applica-
tion, the sensing skin was capable of detecting a minimum
crack length of 0.28 mm. On an electronics level, this techno-
logy requires further integration, including a polymer substrate
that would be common to all sensors, printed interconnects
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Figure 8. (a) Picture of a soft elastomeric capacitor used to constitute a sensing skin [103], and (b) example layout of sensing skin used to
monitor a wind turbine blade (adapted from [104]).

Figure 9. (a) Picture of sensing skin installed on a steel girder connection; (b) schematic of the sensor configuration, with the red ‘x’
showing the starting location of the fatigue cracks and the dashed blue line showing the location of the CGI map; (c) CGI map, initial crack
location (white ‘x’); (d) CGI map, final crack location (white ‘x’); and (e) plot of CGI versus fatigue cycles relating to fatigue crack size
(adapted from [112]).

instead of hard wires, and integrated (possibly flexible)
DAQ.

Advances in science and technology to meet
challenges

From the discussion on current and future challenges, the fol-
lowing advances in science and technology would be neces-
sary in empowering sensing skins for SHM applications. First,
improved fabrication and integration techniques for conduct-
ive nano-particles, in particular carbon nanotubes, must be
developed to decrease their costs and facilitate the fabric-
ation of sensing skins at large scales. The field of materi-
als science has been quite active at working in this direc-
tion, and important advances should be expected in the near
future [113]. Second, manufacturing techniques enabling the
large-scale productions of sensing skins must be researched
to produce sensing systems of required mechanical and envir-
onment robustness. This includes the integration of flexible
interconnects, and techniques to join flexible, stretchable, and
hard substrates (e.g. hard wires linking to an external DAQ
system), which is of great interest to researchers in the field
of flexible hybrid electronics [114]. To do so, promising tech-
niques could be developed leveraging advances in additive

manufacturing (AM) and could also be available in the near
future [115]. Third, perhaps more futuristic, is the need to
produce completely autonomous sensing skin systems that
would also include flexible DAQ and transmission systems, as
well as on-board processing and power harvesting capabilities.
This would require important cross-disciplinary work integ-
rating knowledge in materials science, industrial manufactur-
ing, electrical engineering, SHM, in addition to the application
domain expertise to optimize the design of the dense sensor
network forming the skin and its location in field deployments.

On a high-level perspective, it is important for the field
to join efforts in producing several field demonstrations and
generating data to convince the various stakeholders of the
usefulness of sensing skin technologies. Ideally, these applic-
ations would successfully link sensor data to decision sys-
tems, for example condition-based maintenance scheduling.
It is only through these examples that one would be capable
of understanding the potential financial gains in using these
densely distributed networks. Because this is also true for any
other SHM system, it will also be important to identify key
SHM applications for which sensing skins would be substan-
tially advantageous to other SHM technologies. An example
is their use to discover new fatigue cracks, whereas other
existing sensing solutions are too localized to be capable
of such.
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Concluding remarks

To conclude, sensing skin is an exciting and promising SHM
technology, because it has the potential to emulate biological
skin to allow for the local detection of damage and other
states of interest over very large surfaces. While research-
ers focusing on sensor development within the field of SHM
have already proposed and demonstrated interesting sensing
skin technologies with groundbreaking potentials, there still

exist important challenges before we see these dense sensor
networks deployed in the field, for example on bridges and
aircraft airframes. Some of these challenges have been dis-
cussed, and it is anticipated that current and future research
will help meet these scientific and technological challenges in
the near future. However, it is only through strategic integra-
tion of cross-disciplinary expertise and technically and finan-
cially convincing field demonstrations that sensing skins will
be truly empowered.
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Status

Among various measurements performed on civil structures,
strain is an important indicator for stress concentration and
crack development. Traditional strain measurements usually
rely on metal foil strain gages and fiber optical sensors. How-
ever, these sensing technologies require lengthy cables for
DAQ and power supply, which increase the overall install-
ation and maintenance cost of the whole monitoring sys-
tem and limit the deployment scale. The development of
wireless communication technology has facilitated more con-
venient application of SHM systems on large structures. A
conventional wireless sensor node usually has at least an
embedded processor and a wireless transceiver [42, 44].
Although the wireless sensing systems have achieved suc-
cess in field deployment, the requirement of onboard battery
power remains a difficulty for long-term application. Many
sensor locations on a large structure may not have reliable
source for energy harvesting. Even with reliable solar power,
rechargeable batteries may need frequent replacement when
operating in the outdoor environment.

The recent emergence of passive wireless sensors, which
do not need battery or other onboard power supply, has shown
promise to overcome the challenges [116, 117]. One widely
investigated approach for passive wireless sensing is RFID
technology. The RFID technology can offer the ability to mod-
ulate the response signal from the sensor and thus distinguish
it from environmental reflection. In recent years, many passive
wireless strain sensors based on RFID technology have been
proposed. In particular, antenna sensors stand out for its simple
configuration and low cost. The sensing mechanism relies on
the fact that the electromagnetic resonance frequency of an
antenna depends on its dimension. Based on this physics prin-
ciple, the wirelessly identified resonance frequency shift of an
antenna sensor can be utilized to estimate the strain applied on
it.

In another study, a printed RFID patch antenna has been
shown to measure high strain with the change of antenna gain
and impedance [119].Meanwhile, Occhiuzzi et al demonstrate
the relationship between strain and electromagnetic behavi-
ors of a meander-line RFID antenna sensor [120]. In order
to reduce the size of an RFID patch antenna sensor, Yi et al
propose an antenna folding technique using vias, and validate
the performance of the folded patch antenna sensor by tensile
experiments [121]. Multi-physics simulation coupling mech-
anics and electromagnetics is proposed to more accurately
describe the behavior of the sensor [122, 123]. Finally, more
literature review on passive antenna sensor for strain measure-
ment can be found in survey articles [45, 124].

Figure 10. Multi-physics simulation of a slotted patch strain sensor
rosette mounted on an aluminum plate.

Current and future challenges

One need for improvement in RFID antenna sensors is to fur-
ther reduce the size of the antenna patch. Yi et al propose to
add slots on the top copper cladding to provide a detoured
current path, the length of which determines antenna reson-
ance frequency [125]. The passive slotted patch antenna sensor
is designed to reduce sensor footprint, while maintaining the
sensor operating frequency around 900 MHz RFID band. The
size reduction is achieved by introducing slots on the top cop-
per cladding to detour the surface current, the sensor size is
reduced to 4.4 × 4.8 cm2, which is only half of the pre-
viously proposed folded patch antenna sensor. Mechanics-
electromagnetics coupled simulation is first conducted to eval-
uate the strain sensing sensitivity. Extensive experiments are
further performed to verify the sensor performance. The test
results show that the passive slotted patch antenna sensor is
capable of sensing small strain levels. The sensor can mon-
itor not only tensile strain, but also compressive strain with the
same sensing mechanism. The interrogation range test shows
that the sensor can be recognized when the reader is as far as
90 in away from the sensor.

Benefiting from the smaller size of the slotted patch
antenna, strain sensor rosettes made of slotted patch antenna
sensors are also studied to measure an arbitrary plane stress
scenario that includes two normal and one shear strain
components [126]. Simultaneous resonance frequency shifts
of the three antenna sensors are used to derive the three
strain components (figure 10). The multi-physics simulation
demonstrates that each antenna sensor has a longitudinal strain
sensitivity of −771 Hz µε−1, and a transverse sensitivity of
−220 Hz µε−1. Nevertheless, although the sensor can be inter-
rogated at a distance of 90 in, it is still relatively limited for
field testing in an outdoor application.

Besides RFID modulation, frequency doubling technique
using a Schottky diode is another signal modulation method
investigated for passive antenna sensors [127]. By doubling
the backscattered signal frequency, unwanted environmental
reflections are removed. The frequency doubling antenna
sensor consists of three main components—a 2.9 GHz receiv-
ing patch antenna, a matching network, and a 5.8 GHz trans-
mitting patch antenna (figure 11). The higher operating fre-
quencies (compared with∼900MHz RFID) can enable sensor
size reduction and strain sensitivity improvement. For inter-
rogation, a wireless reader emits a 2.9 GHz interrogation sig-
nal to the 2.9 GHz receiving patch antenna of the antenna
sensor. The matching network integrated with a Schottky
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Figure 11. Frequency-doubling antenna sensor.

diode then doubles the interrogation frequency of 2.9 GHz to
the backscattering frequency of 5.8 GHz. The 5.8 GHz trans-
mitting patch antenna finally responds with the backscattered
signal to the reader.

Validation experiments are conducted to characterize wire-
less strain/crack sensing performance of the frequency doub-
ling sensor [127]. Tensile testing shows a strain sensitiv-
ity of −5.232 kHz µε−1 and a determination coefficient of
0.9890. The strain sensitivity of the frequency doubling sensor
is around five times of previously developed RFID antenna
sensors. The experimental results demonstrate the potential
of the frequency doubling antenna sensor for both strain and
crack sensing. However, future research is needed to improve
the reliability of the antenna sensor, particularly for differ-
ent reader-sensor distances and interrogation power levels. In
order to maximize the sensing performance, more system-
atic approach is required to optimize the frequency doubling
antenna sensor design.

Advances in science and technology to meet
challenges

Building upon the frequency doubling concept using a Schot-
tky diode between two separate patch antennas, latest dual-
band antenna technologies can be investigated to further
downsize the antenna sensor size. For example, a patch-in-
patch antenna configuration can contain a 5.8 GHz inner
patch antenna, and a 2.9 GHz outer patch antenna. The dual-
band antenna design not only reduces the overall sensor size,

but also provides the capability of simultaneously measuring
strain in two directions by utilizing two orthogonal polariza-
tion readings [128]. At 2.9/5.8 GHz operation, the sensor size
is estimated to be 4 × 4 cm2. Once the frequency doubling
methodology is verified, additional size reduction can be eas-
ily achieved by increasing the operation frequency range.

Furthermore, simulation of antenna sensor behavior
requires multi-physics studies encompassing mechanical and
electromagnetic modeling. Simulation efficiency is critical
when striking a balance between accuracy and computational
resources. Besides past frequency-domain finite-element
analyses, one can investigate the performance of a multi-
resolution time-domain (MRTD) scheme for electromagnetic
simulation [129]. The MRTD scheme is a generalization to
finite difference time domain (FDTD) method that belongs to
the family of finite difference methods. While encountering
problems with complex antenna geometries, the straightfor-
ward use of FDTD suffers from serious limitations due to
substantial requirement on computing resources and long
computing time. Utilizing scaling and wavelet functions as
complete set of field basis functions, the MRTD scheme can
provide adaptive gridding in both space and time, and thus, sig-
nificantly save memory usage and reduce computation time.

Concluding remarks

The research field of antenna patch strain sensors is highly
interdisciplinary, requiring expertise in multiple engineer-
ing domains including mechanics and electromagnetics. The
development involves design, modeling, simulation, and
experimental testing. Due to its very low cost at mass pro-
duction, patch antenna sensor instrumentation at high nodal
density can be achieved at a reasonable expense. Such novel
antenna sensors have immense opportunities for various
applications, since stress concentration and fracture are among
the most common concerns for many engineering structures.
The sensors can be used in various civil, industrial, mech-
anical, and aerospace structures, including both metallic and
non-metallic ones. Being wireless and battery-free, future
antenna sensors are expected to provide unprecedented con-
venience in operation, ease of fabrication, low cost, as well as
high accuracy.
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Abstract

Cellular lattice structures with multi-scale geometrical fea-
tures and designs possess excellent thermal and mechan-
ical properties, and their impressive stiffness- and strength-
to-weight ratios are well suited for lightweight engineering
applications. However, defects may form during AM and
when they are placed in service. Conventional NDE methods
for detecting damage, such as computed tomography and ultra-
sonic imaging, are not ideally suited for cellular lattice struc-
tures with complex geometries. Instead, this study investig-
ated the use of 3D ERT as an alternative NDE method, where
only temporary and sparse boundary electrodes are needed
to interrogate the entire structure. In short, 3D ERT utilizes
boundary electrode voltage measurements to reconstruct the
target’s conductivity distribution. Damage such as voids and
cracks in cellular lattice struts result in conductivity decreases,
which can be directly visualized in the reconstructed conduct-
ivity distribution. However, the complex network of struts in
3D open cellular lattice structures and the ill-posed nature of
the ERT inverse problem make conductivity reconstruction a
time-consuming process. Furthermore, conductivity distribu-
tions can suffer from low imaging resolution, where small
damage features within a strut cannot be accurately located.
Therefore, a supervised machine learning method that utilizes
artificial neural networks (ANNs) was used in the 3D ERT
solver for achieving high-resolution damage characterization.
This data-driven algorithm is significantly faster than conven-
tional ERTwhile enabling greater accuracy of 3D conductivity
distribution reconstructions. Experimental results are presen-
ted in this work to validate this machine-learning-based ERT
solver.
Keywords: 3D, additive manufacturing, artificial neural net-
work, damage localization, nondestructive evaluation, strut.

Status

Lightweight engineering has become an increasingly import-
ant focus for aerospace, naval, and automotive structures,
especially when considering the goals of enhancing safety,
reducing power consumption, and improving performance and
safety [130, 131]. In particular, lattice structures, which can
possess nano-, micro-, meso-, and macro-length-scale fea-
tures to achieve unique mechanical and thermal properties,
are widely employed for lightweight engineering applications
[132]. They are often engineered with high stiffness- and

strength-to-weight ratios that are derived from the topology
of their unit cell, which can be tailored to meet specific design
demands and constraints [130, 131, 133].

Despite the advantages that lattice structures have to offer,
their broad use has been impeded by the difficulty in realizing
their complex geometries when using conventional manufac-
turing processes. Traditional manufacturing methods, such as
investment casting, milling, wire forming, and bonding, are
limited by low-volume, high costs, and simple geometrical
structures [133, 134]. More recently, advances in AM meth-
ods, such as fused deposition modeling [135], extrusion [136],
and powder bed fusion [137], have enabled the realization of
complex and multi-scale lattice structures. However, defects
can be generated during manufacturing because of nozzle
clogs or uncontrolled thermo-mechanical behaviors. While
these defects may be very small initially, they can propag-
ate when these structures are operated and loaded, where they
can be subjected to design loads, unexpected impact, extreme
events, and various ambient environmental effects [137]. In
short, these defects can significantly compromise the per-
formance and functionality of these multi-scale cellular lat-
tice structures. Therefore, there is a need to characterize these
defects in a nondestructive manner for ensuring optimal part
quality and structural performance.

Current and future challenges

Conventional NDE methods suffer from inherent challenges
when used for detecting damage in cellular lattice struc-
tures. For example, discrete sensors are difficult to be integ-
rated into lattice structures. Even so, discrete sensors are
by nature point sensors that can only measure structural
response at their instrumented locations. The complexity
of cellular lattice structures and the number of struts that
form the structure mean that it is impractical to install
sensors at every location. On the other hand, imaging meth-
ods, such as computed tomography [138], are costly, time-
consuming, and require numerous projection slices to visu-
alize and resolve internal defects. Ultrasonic methods [139]
need numerous actuators and sensors, as well as complex
wave propagation patterns, to overcome issues related to
image artifacts and the geometrical complexity of these lattice
structures.

Instead, this study investigated 3D ERT as an efficient and
practical NDEmethod for localizing defects in complex lattice
structures. In short, ERT is a soft-field imaging method that
utilizes boundary electrical potential measurements as inputs
to an inverse problem to reconstruct the interior conductivity
distribution of a conductive body [140, 141]. Cracks or defects
decrease the localized conductivity of the body, which can
be identified from reconstructed ERT conductivity distribu-
tion images. Unlike conventional densely distributed sensing
approaches, ERT only needs electrical current excitations and
corresponding voltage measurements along the boundaries of
the body, which makes this technique particularly suitable and
scalable for complex cellular lattice structures. However, tra-
ditional physics-based approaches for solving the ERT inverse
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problem are time-consuming and computationally intensive
[142, 143], even though they have been successfully used in
patterned, grid-like structures similar to cellular lattices [144,
145]. Data-driven methods that could potentially output con-
ductivity distributions in near-real-time would be more suit-
able for detecting damage in complex structural geometries
(e.g. cellular lattice structures) and for use in high throughput
manufacturing settings.

Advances in science and technology to meet
challenges

Data-driven ANN techniques have garnered significant atten-
tion because of their adaptability for modeling nonlinear pro-
cesses. An ANN is composed of neurons that receive and pro-
cess a signal with an activation function, as well as edges that
connect and transmit a signal to other neurons. The signal
propagates from the first layer (i.e. input layer), through hid-
den layers, and to the last layer (i.e. output layer).

ANN structures that possess multiple layers with numer-
ous neurons could be efficiently adapted to solve ERT prob-
lems with inherent nonlinearity [146, 147]. As compared to
a physics-based ERT approach with one-step linearization,
an ANN could reconstruct a target’s conductivity distribution
with higher accuracy, especially when considering the non-
linear nature of conventional ERT. Moreover, the calculation
of the Jacobian matrix J in the physics-based ERT method
needs the nodal potential of each FE element in each cur-
rent injection scheme, which is computationally intensive and
time-consuming [148].

In this work, an ERT-ANN system for reconstructing the
conductivity distribution of 3D lattice structures was imple-
mented. First, the generic structure investigated in this study
is a 3 × 3 × 1 cellular lattice structure with a cubic unit cell,
and the model is shown in figure 12(a). The structure consists
of 64 struts, each with a length of 40 mm and a cross-sectional
area of 2 × 2 mm2. A total of 24 electrodes were attached
to the junctions of the boundary struts, which are marked in
red in figure 12(a). To effectively apply the ERT-ANN sys-
tem to the structure, the model was further meshed in Abaqus
with 3440 tetrahedral finite elements. The conductivity of the
undamaged structure was uniformly set as 1000 S m−1. This
numerical model was used to solve the ERT forward problem
to determine the boundary voltage responses corresponding to
different current injection schemes. These datasets were then
used for training the ANN system.

Second, the ERT-ANN system consisted of two sets of
ANN structures, namely, ANN I and ANN II, was developed.
ANN I was used to identify the damaged strut (i.e. with a
decrease in conductivity) within the cellular lattice structure.
It utilizes information from 504 boundary voltage measure-
ments to estimate the centroid of the damaged strut j. After
identifying the damaged strut j, the second ANN II-j, which
corresponds to the damaged strut j, was used to localize the
exact damage within that strut. In this study, only single dam-
age cases were considered.

Training of ANN I entailed preparing datasets for an
undamaged case and 5000 damaged cases for the 3 × 3 × 1

cellular lattice structure shown in figure 12(a). Damage to
the strut was simulated by modeling the conductivity of a
randomly selected FE element of the structure and setting it
to 0 S m−1. For each case, the ERT forward problem was
solved to obtain the boundary voltage response associatedwith
a current injection scheme. They were then corrupted with
Gaussian white noise with 66.2 dB signal-to-noise ratio. The
normalized voltage difference (dVn) between each damaged
state and the undamaged state was calculated as:

δVn =
Vd −V0

v
(1)

where v is the maximum absolute measurement on the undam-
aged structure, Vd and V0 represent voltages in the damaged
state and the undamaged state respectively. Because ANN I
only focuses on detecting the damaged strut instead of the
exact damage location, singular value decomposition (svd)
could be used on δVn for input dimensionality reduction [149].
Here, the dimension of the input depends on the number of
singular values included when the ratio of variance reaches
a 0.995 accuracy, and a total of 72 encoded inputs δVn

svd

were utilized in ANN I. The output of ANN I is the centroidal
coordinates of the damaged strut.

The second structure (ANN II) includes multiple ANN
structures, where ANN II-j could provide the location of the
single defect within strut j, and j starts from 1 to the total num-
ber of struts (N) in the lattice structure. To train ANN II-j,
500 damaged cases, each with a unique and randomly selected
single FE element defect of 0 S m−1 within strut j, were gener-
ated. The ERT forward problem was solved for each damage
case (i.e. considering the entire lattice structure). Considering
that all these damaged states are from the same strut j, the cal-
culated boundary responses would be similar. Thus, svd could
also be used on δVn for a more efficient input dimensional-
ity reduction [149]. A total of 18 encoded inputs δVn

svd from
svdwere selected to represent the 504 boundary voltages when
strut j is damaged. The output of ANN II-j is the centroid of
the defect element k within strut j.

The ANN architectures for ANN I andANN II-j used in this
study are illustrated in figures 12(b) and (c). With the encoded
normalized voltage difference as input, four fully connected
hidden layers with 2048 neurons in each layer were employed.
For each neuron in the hidden layer, an exponential linear unit
was implemented.

To validate the performance of the ERT-ANN system,
experiments were conducted on 3D-printed polylactide acid
lattice structures identical to the structure model shown in
figure 12(a). The lattice structure was then coated with an elec-
trically conductive multi-walled carbon nanotube (MWCNT)-
based thin film [150]. A customized ERT data acquisition
(DAQ) system was employed in this study to inject electrical
current and measure boundary voltages. Two different dam-
age states (i.e. states 1 and 2) were investigated as shown in
figures 13(a) and (b). Damage states 1 and 2 were introduced
to the structure by mechanically etching off the conductive
MWCNT thin film at portions of strut 1 or strut 2, respectively.

The effectiveness of ANN I on localizing the damaged
strut was examined first. The calculated normalized voltage
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Figure 12. (a) A 3 × 3 × 1 lattice structure model with electrodes marked in red was plotted. (b) The architectures of ANN I and (c) ANN
II-j are illustrated.

Table 2. The true and predicted centroids from ANN I and ANN II in damage state 1 and state 2.

ANN I ANN II

x (mm) y (mm) z (mm) x (mm) y (mm) z (mm)

State 1 True 39.00 57.00 19.00 38.76 44.57 19.73
Predicted 44.30 61.25 19.46 39.02 45.62 19.51

State 2 True 58.00 0.00 19.00 70.61 −0.31 19.80
Predicted 56.60 2.27 19.60 69.55 −0.20 21.06

Figure 13. Experimental results and the visualization of (a) damage
state 1 and (b) state 2 solved with the ERT-ANN system.

differences (δVn) between undamaged and damaged states
were processed with svd and employed in ANN I as inputs.
The predicted locations of the strut centroids, x, y, and z were
stated with the true centroids of damaged struts in table 2.
The image position errors1 for the two states are 0.1702 and
0.0683, respectively [151]. The predicted values were then
employed in the k-nearest neighbors algorithm to find the dam-
aged strut in the two cases. The middle figures in figures 13(a)
and (b) confirmed that ANN-Iwas able to correctly identify the
damaged strut in the lattice structure for both damage states.

Then, ANN II-1 and ANN II-2 corresponding to strut 1 and
strut 2 were then employed to estimate the specific damage

locations within each respective strut. The true and the pre-
dicted x, y, and z of centroids for each state are reported in
table 2, and the image position errors for the two states are
0.0276 and 0.0413. The result visualizations are shown in the
right-hand-side images in figures 13(a) and (b). The results
show that ANN II-j was able to correctly identify the portion
of the strut where the damage occurred. Only small deviations
between the actual and predicted locations were observed.
Similar to before, the predicted centroids could be fed into the
k-nearest neighbors algorithm to obtain the x, y, and z coordin-
ates for the damaged element. The precision of the ANN sys-
tems is constrained by the discretized finite element. Overall,
these test results validated the damage localization perform-
ance of the ERT-ANN system for topologically ordered lattice
structures with low image errors.

Concluding remarks

An ERT-ANN system was proposed in this study for detecting
and localizing defects, such as broken or partially damaged
struts, in topologically ordered conductive lattice structures.
Specifically, the ERT-ANN system consisted of two ANN
structures. ANN-I was used to identify the damaged strut,
while ANN-II further determined where the damage occurred
within the strut. The method was trained using numerically
simulated data (i.e. by considering different damage cases and
calculating the boundary voltage responses using the ERT for-
ward problem). Upon training, experiments were performed
using a conductive thin-film-coated lattice structure, where
damage was introduced by etching off portions of the film in
different struts. The ERT-ANN system was able to correctly
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locate the damaged struts and accurately identified the por-
tion of each strut that was damaged. Overall, the data-driven
ERT method could utilize boundary voltages to reconstruct
the conductivity distribution of complex 3D lattice structures

and detect conductivity decreases due to damage such as strut
breakages, voids, or manufacturing defects. Future studies will
consider different damage severities as well as more complex
distributed damage scenarios.
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Status

Smart structural materials can be defined as structural com-
ponents with added functionalities enabling, for instance, self-
sensing, self-healing, and self-actuating. This field of smart
structural materials gained enormous popularity after the first
visionary idea of transforming structural concrete into a dis-
tributed sensing system able to reveal its internal state of stress
and strain [152]. Research on smart structural materials is
still very active nowadays, working at bringing a truly bio-
inspired revolution in construction technology and SHM to
empower the automated assessment of structural materials.
Benefits of self-monitoring structures are clear to the scientific
community: inherent mechanical durability of the SHM sys-
tem, densely distributed sensing capability, high fidelity of the
measurements, and a more direct link from signal to decisions,
to name a few.

Earlywork on smart concrete byDeborahChungwas a con-
ductive cement-based mortar doped with short carbon fibers
and the sensing principle was based on changes in volume
electrical resistivity provoked by flaw generation or propaga-
tion. To date, smart concretes are fabricated using differ-
ent types of nano- and micro-reinforcements (e.g. MWCNTs
[153] carbon nanofibers [154], and graphene [155]), that
enhance the material’s electrical conductivity and piezores-
istivity, yielding substantially high gauge factors (in the range
from 102 to 103 [156] whereby off-the-shelf strain sensors stay
in the order of 10◦). This occurs at the so-called ‘percolation
threshold’, that is, at a doping level corresponding to themater-
ial transition from being an electrical insulator to becoming a
conductor (figure 14).

Research efforts made in the last decades have been aimed
at (1) increasing the technology readiness level and (2) extend-
ing the smart self-sensing concept to different types of con-
struction materials [157, 158]. Notable contributions con-
cerned the development of smart bricks [159, 160] formasonry
structures (reaching a gauge factor of about 500 with the
ability to sense changes in strain in the order of less than
10 microstrains), smart pavements for weigh-in-motion in
bridges [161] and smart anchors for prestressed concretes
using ultra high performance concrete (UHPC) [162] (capable
of revealing a prestress loss of a few tens of MPa within a
prestressing tendon), just to mention some of the most innov-
ative developments.

While earliest studies were mostly experimental investiga-
tions aimed at demonstrating and characterizing self-sensing

Figure 14. Smart concrete strain sensors doped with MWCNTs
(top) and corresponding experimental percolation curve (bottom).

properties and optimizing on an empirical basis filler content,
more recent works addressed the mathematical characteriza-
tion of electrical percolation and the modeling of the elec-
tromechanical constitutive behavior of the composites, with
the objective of assisting the design of thematerials and optim-
izing their properties. These models typically follow two dif-
ferent approaches: (1) equivalent lumped circuits models [163]
and (2) homogenization models [164]. While the former class
of models is particularly useful for signal processing purposes,
time-dependent response being naturally included in the gov-
erning equations, the latter class is quite more powerful at
establishing clear physically-based links betweenmatrix prop-
erties, filler properties and macroscopic elastic and piezores-
istive constants of the composites. Often based on analyt-
ical micromechanics approaches, homogenization methods
also offer the great advantage of being inherently implement-
able in computational models (e.g. finite element multiphys-
ics models) [165]. Also worth mentioning are the efforts to
develop tailored measurement approaches through DC, AC
and biphasic methods.

Current and future challenges

To date applications of smart structural materials can be classi-
fied into bulk, sandwich, coating, bonded, or embedded [156].
Although some full-scale applications have been already doc-
umented, research in smart structural materials has hardly
exited the laboratory environment and met the field. In short,
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the gap from the material level to the full-scale level is yet to
be filled, attributable to the open challenges and bottlenecks
that still need to be tackled. These include:

• deployment, scalability and costs
• electrodes and wirings
• signal processing and environmental disturbances.

Deployment issues come mostly from the difficulty of dis-
persing micro- and nano-particles within structural materials’
matrices [157, 158]. In cement-based materials, for instance,
the use of carbon nanotubes requires a sonication of water-
nanotube suspensions that is prohibitive over large casting
volumes. In smart brick technology, the difficulty in substi-
tuting an existing brick with a smart one stands out as a major
limitation, let alone the issue of finding a conductive functional
filler that can resist high baking temperatures.

The cost of self-sensing structural materials can be substan-
tially greater than the cost of the base material, both due to the
cost of the nano- or micro-reinforcement and to the cost of
production/casting, including the aforementioned issue of dis-
persion. This is making embedded and bonded applications,
using small sensing units, far more attractive with respect to
bulk, sandwich and coating methods, as it is the case of smart
concrete aggregates, smart bricks for masonry (figure 15) and
smart pavement sections for traffic monitoring. Cost of DAQ
equipment is a limiting factor as well, but this is also valid
for traditional SHM strategies based on off-the-shelf sensors,
yet the steadily decreasing cost of electronics will encourage
future deployments.

Electrodes and wirings still represent the greatest bottle-
neck for smart materials. Electrodes are hardly placed before
casting and significantly complicate the fabrication of the
structural components. Furthermore, they may significantly
interact with steel reinforcement and pose aesthetical issues.
In pavements, their embedding seems to be less critical, given
that holding frames can be easily fabricated to keep the elec-
trodes in their desired positions even before the pavement lay-
down. The transition to wireless seems to be easily accessible,
even though the distributed nature of sensing plays against a
standard wireless solution.

The response of smart structural materials to applied strain
and damage is complex, fully non-linear, and strongly affected
by the external environment. This is even more complicated
when the stress state in the material is three dimensional.
Micromechanics studies show that smart structural materials
tend to be sensitive to volumetric strain while almost being
insensitive to shear strain [166]. However, when electrodes are
fabricated using horizontal plates, for example in smart bricks,
sensing becomes essentially related to uniaxial compression
due to the contact resistance contribution being in series with
the internal piezoresistive contribution. The high sensitivity of
smart structural materials’ outputs to temperature and humid-
ity is an additional modeling challenge that any signal pro-
cessing strategy needs to take into account.

Figure 15. Full-scale masonry building monitored with six smart
bricks on the façade (top) and reconstructed strain map from smart
bricks’ outputs using Kriging interpolation (bottom) [166].

Advances in science and technology to meet
challenges

The current status of the research suggests that cost and scalab-
ility issues will be resolved in the relatively short term through
advances in materials science and the development of effect-
ive, bio-compatible and low-cost filler solutions and low-cost
dispersion chemicals. Hybrid mixes using a small amount
of nanofillers that do not pose significant dispersion prob-
lems to booster percolation of a second, larger and more eas-
ily dispersible filler should be also given full consideration.
Industrial production and 3D printing [167] may dramatically
reduce costs for embedded/bonding solutions, while an extens-
ive application of bulk forms of smart sensing poses greater
challenges. In the mid-range term, the cost and environmental
pressure will most likely be on the electronics rather than
the materials. Fabricating electronic components with bio-
compatible materials will therefore become more and more
important in the near future.

To finally and definitively address the electrode and wir-
ing issues, it is of pivotal importance to develop electrode-
fee sensing strategies [168] using contactless devices, for
instance through electromagnetic methods. The greatest chal-
lenge here is to develop non-contact methodologies that can
precisely measure material’s resistivity and its small variations
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under strain. Such resistivity should be investigated in the
bulk material and not just on the surface to achieve mean-
ingful results with limited sensitivity to external humid-
ity/moisture of the material. Even though in principle less
attractive, externally attached measurement points with highly
conductive interfaces connecting probe to sensing mater-
ial seem to represent a more at hand electrode free solu-
tion, but durability of the interface may become the limiting
factor.

Given the high complexity of the relationship between
environment, strain, damage and electrical properties of smart
structural materials, mapping structural performance/load to
electrical response using mathematical models may become
a formidable challenge. Here, the greatest promises come
from artificial intelligence methods that have the ability to
unveil complex patterns in the data and effectively circum-
vent through complex data mining the difficulty in interpreting
the observed response based on a physical model. Neverthe-
less, the application of data sciencemethods, machine learning
and artificial intelligence to smart structural materials is in its
infancy [169].

Concluding remarks

Transforming structures into self-assessing systems through
micro- or nano-scale functionalization of their constituent
materials and embedding intelligence through signal pro-
cessing of smart materials’ outputs promises to be the true

revolution of SHM in the near future. Attaching hundreds or
thousands of sensors to each monitored structure is simply not
a viable option to conduct effective condition-based mainten-
ance of our ageing structures and infrastructures. Smart struc-
tural materials, instead, can transform structures into densely
distributed sensor networks, analogous to biological systems.
This field of research is quite active and advances to meet
existing challenges are almost continuous. However, the path
to an effective technological transfer is still quite long and
a paradigm shift is needed on issues regarding field deploy-
ment, scalability, costs and signal processing. Smart pavement
applications, for purposes such as low cost vehicle detection
and weigh-in-motion, seem to be the closest to the field and
those with the highest technology readiness level. As for the
other applications, we are approaching a turning point in the
research where the next five to ten years are critical to actually
achieve the impact that researchers have foreseen in the last
two to three decades.
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Status

As one of the most obvious manifestations of humankind’s
physical footprint on Earth, infrastructures carry the human
civilization and progress. In order to further improve human
living environment and life quality, updating infrastructures
to be smart is essential. Therefore, infrastructures are at the
beginning of a digitally driven revolution. During their ser-
vice lives, infrastructures face slow ageing and gradual deteri-
oration, which initiates at the material level. Perceiving the
deterioration in material performance at an early stage can
provide effective maintenance before serious structural fail-
ures. Therefore, self-sensing of material performance is an
important paradigm for updating infrastructures with smart
digital insights to enable SHM. Concrete, the most widely
used engineering material for infrastructures’ construction,
has no intrinsic self-sensing property. The incorporation of
conductive or semiconductive fillers (e.g. carbon materials,
metal materials, and metal oxides) can endow concrete with
the smart ability to sense stress (or loading), strain (or deform-
ation) and damage (including crack and fatigue, etc) in itself
as well as environmental actions (e.g. temperature and humid-
ity) while maintaining or even improving its mechanical
properties and durability. Since its first discovery in early
1990’s, much research work has been done on the com-
position and preparation, measurement and characterization,
sensing properties and mechanisms as well as models, and
structural applications of smart concretes with different func-
tional fillers, such as carbon fibers, steel fibers, conduct-
ive aggregates, nickel powders, carbon nanotubes/nanofibers,
graphene, electrostatic self-assembled carbon nanotubes and
nano carbon black/titanium dioxide, super-fine stainless wires,
and in-situ synthesizing carbon nanotubes on cement/clinker/
mineral admixtures/reinforcing fibers. Figure 16 shows the
principles, compositions, structures, and typical sensing beha-
viors of smart concrete [170, 171]. Over the past three dec-
ades, smart concrete has witnessed significant advances with
many innovations in both its development and applications.
Compared with other sensing technologies used for SHM
(e.g. optical fiber, piezoelectric material, resistance strain
gauge), smart concrete is advantageous in its high sensitivity,
good mechanical property and durability, natural compatib-
ility, identical lifespan with infrastructures, easy installation,

low fabrication and maintenance cost, and free of expensive
accessory equipment. Well-designed smart concrete is very
promising for the development of smart in-situ monitoring
infrastructures, thus improving safety, lifespan, and resilience
of infrastructures as well as reducing the life-cycle costs of
concrete and infrastructures, and resource consumption and
environmental footprint of concrete production and applica-
tion. Therefore, smart concrete can provide the most funda-
mental material for energizing sustainable infrastructures with
elegantly integrated digital insights [172, 173].

Current and future challenges

Smart concrete is bringing new vigor and vitality into SHM
of smart infrastructures, but there are plenty of challenges
involving aspects from fabrication to applications that should
be addressed in the future.

(1) Fabrication. A major challenge in the smart concrete
fabrication is how to incorporate coarse aggregates into
it, which would always increase the functional filler’s
amount, complicate the fabrication process, and induce
poorer sensing, mechanical and durability performances
[174]. More efforts should be devoted to the development
of advanced design and preparation methods to elimin-
ate the aggregates’ influence and to enable easy-to-process
and scalable production of smart concrete with low filler
dosage and sensitive and stable performances.

(2) Measurement. The sensing signal of smart concrete
(i.e. electrical signal) is easily affected by its interior polar-
ization and the ambient temperature and humidity. The
acquisition and extraction principles and methods to elim-
inate these influences are limited at present [169, 175]. In
addition, most of the sensing signal form of smart con-
crete is the mechanical signal. It is essential to expand its
sensing signal forms for other scenarios, such as the bond-
ing and anchoring state between reinforcements (e.g. steel
bars and FRP bars) and concrete, and durability or environ-
mental parameters (e.g. pH value and ion concentration).

(3) Performances. Due to the diversity and uncertainty of the
compositions and performances of smart concrete, it is of
great difficulty to clarify the ‘sensing fingerprints’ of dif-
ferent types of smart concrete under different loadings and
environmental actions and to develop a unified mechano-
electric constitutive model based on the limited under-
standing on conduction/sensing mechanisms [176, 177].
Meanwhile, the long-term sensing performance evolution
of smart concrete is time-varied and complicated, and still
lacks methods and principles for improving the stability
and robustness of smart concrete as well as its perform-
ance prediction models.

(4) Applications. One of the major obstacles that limit the
scale-up applications of smart concrete is its high fab-
rication cost, more specifically the high cost of nano-
scaled fillers. Moreover, the presence of conductive steel
bars in concrete structures always causes short-circuit
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Figure 16. (a) Compositions of smart concrete and principles that a conductive network constituted by functional fillers acts as a ‘nervous
system’ to transduce signals stimulated internally and externally to a computing center, i.e. a ‘brain’, mimicking human behaviors.
(b) Percolation conduction mechanism and sensing mechanism under deformation. (c) Typical sensing behaviors of smart concrete under
monotonic loading.

faults and safety concern during the implementation of
smart concrete [178]. The further challenges include the
design and life-cycle assessment of smart concrete-based
infrastructures, the integrated methods of hardware and
software for smart infrastructures, and state evaluation
methods of infrastructures based on sensing signals. The
industrialized and scale-up applications of smart concrete
are also still facing a lack of relevant regulations and
standards.

Advances in science and technology to meet
challenges

The infiltration and integration of advanced science and tech-
nology with smart concrete are removing the barriers on the
road to smart concrete progress, thus enabling infrastructures
with digital insights (figure 17).

(1) Fabrication. Some advanced synthetic and composite
technologies/theory (e.g. in-situ synthesis, self-assembly
and bionic/biological technologies, excluded volume the-
ory) have shown great power for the scalable fabrica-
tion of smart concrete with aggregate and low dosage
of fillers [172, 179, 180]. Meanwhile, the integration of
smart concrete with other advanced concrete technologies
(e.g. self-healing, self-powered, ultra-high performance,

and sustainable concrete) can provide efficient solu-
tions for performance improvement and functionality
extensions [178, 181]. Moreover, the introduction of
emerging technologies (e.g. material genome and digital
manufacturing) is envisioned to enable smart and stand-
ardized fabrication of concrete [182].

(2) Measurement. The development of novel testing and
DAQ techniques coupled with data extraction and optim-
ization algorithms are important to obtain refined and
multi-level sensing signals. Electrical impedance tomo-
graphy technique can provide more abundant inform-
ation than conventional resistance/voltage measurement
[174]. Non-contact testing or acquisition techniques
of sensing signal can decrease its losses in long-
distance transmission. Using circuit design (e.g. AC and
compensation/differential circuits) and signal processing
algorithms (e.g. blind source separation method), the
polarization and environment effect can be decoupled
[169, 175].

(3) Performances. The combination of laboratory (various
loading conditions, accelerated tests) and field tests, asso-
ciated with conduction/sensing theories, microstructure
analysis, and numerical simulations (e.g. multi-field and
multi-scale) can be used for establishing unified phys-
ical model of sensing performances. Besides, extension
research on long-term sensing performance evolution
would provide inspiration for further understanding and
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Figure 17. Smart concrete-based infrastructures with digital sights.

tailoring sensing performances and building performance
prediction models [183].

(4) Applications. In addition to the bulk form, novel applic-
ation forms of smart concrete (e.g. embedded, coated,
and sandwiched forms, small size sensors/products,
prefabricated members, and cast-in-place nodes) can
reduce the cost due to its deployment only in struc-
tural key positions and replaceable features, address the
steel bars’ effect and safety issues, and protect/strengthen
the structures [184, 185]. The combination of struc-
tural principles with the fusion of sensing information
obtained by smart concrete with other sensing tech-
niques can provide possible solutions for the derivat-
ization of digital twin technology that in turn guides
performance evaluation and design of smart concrete-
based infrastructures [186]. Finally, the integration and
design methods, state evaluation methods, life-cycle
assessment, and formation of regulations and stand-
ards for smart concrete-based infrastructures can be pro-
moted by extensive and long-term practical applications
[161, 187].

Concluding remarks

The failures of infrastructures built with concrete are inev-
itable during their service because of concrete performance
degeneration and external environment action. Therefore, con-
crete and its infrastructures are in a state of entropy increment,
i.e. availability loss. Smart concrete is an advancedmaterial for

tackling this issue because it can provide the relevant inform-
ation of availability loss and guide the implementation of pre-
ventive measures. This benefits from smart concrete’s self-
sensing behaviors that can be changed appropriately accord-
ing to the external loadings and environment actions. The state
information of concretes can therefore be monitored through
measuring their electrical properties. Functional fillers gener-
ate the sensing ‘neural’ network of smart concrete, which give
infrastructures the ‘gene’ that enables smart in-situ monitor-
ing digital insights. Such in-situ monitoring ability allows the
assessment of service status of infrastructures as well as guides
the design and maintenance of infrastructures, thus enhancing
the infrastructures’ safety and resilience, prolonging the infra-
structures’ lifespan, lowering life-cycle costs of concretes and
infrastructures, and reducing the resource and energy waste
as well as environmental pollution (especially carbon diox-
ide emission). Therefore, smart concrete is promising mul-
tifunctional engineering material for energizing the sustain-
able development of infrastructures for shaping and cementing
human civilization.
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Textile reinforced concrete (TRC) technology enables the
development of durable, efficient and environmentally
friendly structural elements with self-sensory capabilities.
Generally, the technology of TRC combines high strength
concrete matrix reinforced by a biaxial textile mesh, which is
usually made of alkali resistant-glass, carbon, or basalt rov-
ings. The high tensile strength of the rovings and their high
resistance to corrosion enable the construction of light, dur-
able and optimal 2D and 3D thin-walled structural elements
(e.g. [188–190]). The reduction of the environmental impact
associated with the shift in construction towards this type
of thin walled TRC structures and the potential contribution
to the sustainability of the built environment are among the
main advantages of the TRC technology. In the near future,
it is plausible that TRC will be used in tanks, pipelines [191,
192], noise barriers [193], precast elements [194], sandwich
elements (e.g. [190]), lost formwork for slabs [195], beams,
columns and for strengthening of existing concrete struc-
tures (e.g. [196]). TRC technology is an excellent candidate
for the development of intelligent concrete structural ele-
ments. Implementing continuous carbon rovings within the
textile and utilizing their electrical properties, enable the
roving to serve simultaneously as the main reinforcement
system as well as its sensory agent. In such a configuration
the same array of carbon rovings yields the reinforcement
required for the load bearing system, and, at the same time,
the sensory system. Demonstration of this concept has been
presented in the literature for detecting mechanical loading
[197–200], strain [201, 202], cracking [203, 204], or water
infiltration [205, 206]. In most of the above studies convert-
ing the carbon roving reinforcement system into a sensory
one was a straightforward act, which did not require spe-
cial devices or additional sensors that should be mounted
externally or internally to the structural element. Recently,
smart TRC pipe systems were developed and their sens-
ory capabilities to detect the occurrence of leakage through
crack zones were conceptually proved [207], see figure 18.
Enhancing the self-sensory capabilities of TRC structures is
a significant step to the realization of intelligent, safe, sus-
tainable, environmentally friendly, and economic concrete
structures.

Current and future challenges

The smart self-sensory concept is based on taking advant-
age of the electrical properties and the continuous configur-
ation of the carbon roving reinforcement. By connecting the

Figure 18. Smart TRC pipe concept, following [207].

ends of the carbon rovings to an adequate DAQ system and
correlating between the measured electrical properties and the
structural state, smart sensory systems are achieved. The mon-
itoring capabilities of smart textile reinforcement are affected
by the uniquemicro-structural mechanism of the rovingwithin
thematrix, and accordingly themeasured electrical signals can
reflect the structural states [199, 200, 202–204].

The concept was demonstrated for various monitoring
applications and various studies were explored the potential
of the carbon-based textile to be used as a multifunctional
system and to yield electrical measurements that can be cor-
related to integrative parameters of the structural state. The
electrical connections were based on direct current (DC) elec-
trical circuits by two-probe or four probe monitoring systems
[197], Wheatstone bridge configurations [199, 204], simple
DC circuits [201] or by AC circuits [200, 205–207]. Although
they proved the feasibility of the sensing concept for SHMpur-
poses, several important challenges remain on the path to a
useful multifunctional system. The challenges are associated
with the implementation of the smart TRC elements, and with
their measurement’s capabilities and their interpretation. Chal-
lenges from the implementation point of view are related to the
possibilities that the embedded carbon fibers will be damaged
during the concrete fabrication process; to the wired connec-
tion of the smart rovings to the DAQ system and its sensitiv-
ity. Challenges from the measurement point of view are asso-
ciated with the magnitude of the measured electrical signals;
the sensitivity of the measurements to distinguish between the
severity of structural health in full scale structural elements;
the sensitivity of the electrical signals to environmental effects
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(temperature and moisture); the integrative nature of the sig-
nals that, currently, can yield only integrative estimation of
the structural state and accordingly are limited in providing
quantitative information about the location and distribution of
the damaged zones. Handling these challenges are the goals of
ongoing and future research and projects in this field.

Advances in science and technology to meet
challenges

The challenges mentioned above can be handled by the
development of improved production processes, applying
advanced electrical measurement technologies, and imple-
menting advanced analytical tools.

Issues associated with damage of the smart sensory carbon
rovings, which occurred during the installation of the TRC ele-
ment, can be handled by advanced manufacturing and indus-
trial processes, since TRC structures are pre-cast in nature.

Systematic errors and inherent uncertainties as well as the
sensitivity of the signals involved in the simulation of exper-
imental tests and realistic measurements and the associate
structural-electrical correlation, can be handled by the devel-
opment of innovative theoretical and experimental methodolo-
gies. It should be based on advanced monitoring and electrical
measurements technologies. It is particularly relevant to elim-
inating ‘false-alarm’ or ‘misreading’ situations in interpreting
the sensory signal into SHM parameters.

Other structural phenomena (among them: the loading rate
and dynamic, inertial, and dissipative effects; fatigue, creep
and shrinkage of the concrete; durability of the TRC structure
and its degradation along time; etc) that should be considered
in the correlation between the structural response and the elec-
trical measurement, can be handled by building a big database
platform based on thorough analytical and in situ experimental
investigations.

Consideration to these and other factors should be invest-
igated in future research in the field.

Concluding remarks

The development of intelligent concrete infrastructures by
using carbon-based textile reinforcement is the key to a sig-
nificant and meaningful reduction in the consumption of nat-
ural materials, to a reduction of the enormous impact on
the environment, and to the development of effective and
safe lightweight concrete structures. Intelligent TRC struc-
tures combine high performance material and structural sys-
tems with integrated non-destructive SHM system. Recent
studies demonstrated the potential and proved the feasibil-
ity of the smart textile. By advanced research, it is plaus-
ible that smart TRC will be found in various constructive
elements. Enhancing their self-sensory capabilities will be
a significant step to the realization of intelligent, safe, sus-
tainable, environmentally friendly, and economic concrete
structures.
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Light has been well known as a renewable source of energy.
Also, it exhibits multi-band physical characteristics that have
intrigued engineering communities to use light as a sensor
signal. For the past few decades, scientific advancements res-
ulted in technological innovations in high-efficient photovol-
taics and photonic/optics sensors. As SHM technologies are
being matured, there has been an increasing demand on prac-
tical application of SHM by addressing two major challenges,
such as dependency on external electrical energy sources and
overload by big data from an increasing number of sensors.
Some researchers have resorted to discoveries in material sci-
ence to make technological innovations by harnessing light’s
unique characteristics for helping improve measurement tech-
nologies for next-generation SHM [208–213]. Optoelectronic
composites showed great potential to perform as a strain sens-
ing component as well as an energy harvester using light as
an energy source [214–219]. Among the optoelectronic com-
posites, conjugated poly(3-hexylthiophene) (P3HT) polymer
is known to play a role as a multifunctional building block that
exhibits a mechano-optoelectronic characteristic (i.e. opto-
electronic properties varying with mechanical strain) as well
as a hole and an electron dissociation spots to create an exciton
(figure 19) [216]. Besides, multimodal sensing capability was
encoded into the optoelectronic composites and was activated
when illuminated by light in different ranges of wavelengths
for different sensing modalities [217]. It was shown that the
two different conjugated polymers, which respond to differ-
ent wavelengths of light, were assembled to exhibit pH and
strain sensing capabilities with infra-red light above 800 nm
range and blue range light in 410–490 nm, respectively [217].
On the other hand, research has been conducted to use light
as a sensor signal for sensing materials’ response to external
physical stimulus [218, 220–223]. Since late 1990’s, mechan-
oluminescence (ML) has drawn researchers’ attention to use
ML for devising ML-based physical sensors as an energy effi-
cient passive sensor, intuitive measurement of physical beha-
vior, and a sensing method potentially suitable for vision-
based SHM.

The multifunctional optoelectronic composites that use
light as an energy source or as a sensor signal are considered
as a promising technology as it can overcome obstacles to
broaden application of SHM technologies. It can be free from
dependency of external electricity and decrease the number
of required sensors to downsize data volume. As more tech-
nological progresses are made toward maturing the multi-
functional optoelectronic composites, it is envisioned that the
novel sensor system will sense different physical phenom-
ena using a single sensor platform and help realize carbon-
neutral energy system by self-powering the sensor system

Figure 19. (a) Mechano-optoelectronic composites test specimen is
subjected to cyclic tensile loading/unloading while being
illuminated by broadband solar-simulated light. Direct current (DC)
is generated and measured using a digital multimeter. (b) The
generated DC is shown to vary with the applied tensile strain.

as well as supplementing an energy supply system of host
structures.

Current and future challenges

Major challenges have been standing in designing microstruc-
tures of themultifunctional optoelectronic composites to attain
target functionalities (figure 20). The challenges are mainly
attributed to lack in knowledge about how/why mutiphys-
ics phenomena are exhibited in the optoelectronic compos-
ites. This knowledge gap consequently leads to missing con-
stitutive equations that engineers need to have for develop-
ing the multifunctional optoelectronic composites for their
own target applications through systematic design scheme.
Instead, due to lack of knowledge, they tend to rely more
on trial-and-error design approaches when they develop
devices using the multifunctional optoelectronic composites.
Advanced materials, which are mainly employed as func-
tional building blocks for devising the multifunctional opto-
electronic composites, often exhibit multiphysics properties.
State variables are linked each other across different phys-
ical domains for the respective functional building blocks.
For instance, microstructures of a functional building block
govern the composites’ functionalities, such as optoelectronic
properties, as external physical stimuli deform the compos-
ites. This shows the relationship between optoelectronic prop-
erties and mechanical deformation across optoelectronic and
physical domains, respectively. On the other hand, inability to
design the microstructures results from lack in manufacturing
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methodologies suitable for forming designed microstructures.
The current manufacturing process is mainly focused on build-
ing up the composites at device scale. So, it naturally over-
looks how the microstructures of a functional building block
are structured at micro-/nanoscales. As the different length-
scale features are simultaneously affected by the single man-
ufacturing process, design optimization for the optoelectronic
composites at nano to device scale is hardly accomplishedwith
conventional manufacturing approaches.

Although light is ubiquitous, use of light is not always
accessible due to it is affected by environmental changes and
interfered by ambient light. Therefore, on-site application of
the multifunctional optoelectronic composites can hardly be
realized without addressing the following challenges. Unlike
electrical energy to be effectively stored in batteries or sup-
plied through electrical wires from power source, trapping and
storing light is not feasible. Relying on natural light or focused
light source (e.g. laser) limits online readiness of the opto-
electronic composites. More specifically, selective sourcing
of different wavelengths of light is not readily available with
natural sunlight due to its broadband wavelength nature. As
for the composites emitting light as a sensor signal, such as
ML composites, the ML signal could be interfered by ambient
light in actual application that can result in corrupted sensor
signal. Also, reading ML light from, for instance, spatial ML
coatings could be slow although the light patterns that can be
acquired from the coating are full of useful sensing informa-
tion. Video recordings of ML light emission patterns require
image processing to yield physical parameters to be inter-
preted for understanding the host structural behavior.

Advances in science and technology to meet
challenges

Physics-based understanding about the functional materials
in the multifunctional optoelectronic composites is essential
to move away from trial-and-error design scheme to per-
form systematic knowledge-based design. There has been rel-
atively less efforts made to understand how optoelectronic
properties vary with various external stimuli in material sci-
ence community. Conjugated polymers have been actively
used for devising organic photovoltaic cells, and thus major
research focus has been to maximize the power conversion
efficiency [224]. Accordingly, considered are devices in ideal
situations (e.g. undeformed, in mild temperature ranges, and
inert environment). However, use of the optoelectronic com-
posites for a multifunctional self-powered and multi-modal
sensing and energy harvesting device needs scientific know-
ledgebase about multiphysics characteristics, which have been
understudied in materials science community.

Understanding a relationship spanning different length
scales is another challenge that hinders ones from conducting a
multiscale design. Target functionalities of the optoelectronic
composites are expected to be attained by forming microstruc-
tures designed in multiscale simulation tool. An exemplary
solution for a molecular level simulation is large-scale atom-
ic/molecular massively parallel simulator (LAMMPS), which

Figure 20. Challenges in broadening application of the
multifunctional optoelectronic composites can be overcome through
advances in science and technology.

is an open-source freeware developed by Sandia National
Labs [225]. While it serves as a powerful tool for modeling
microstructures of functional building blocks, it is challenging
to theoretically study how the microstructures affect the
optoelectronic composites’ functionalities. Imaging tools (e.g.
electron microscope, grazing incident x-ray diffractometer,
and atomic force microscope) are available to visualize how
microstructures are formed with different sets of manufactur-
ing parameters. However, across the different length scales,
multiscale and multiphysics modeling tool is not readily avail-
able to understand how microstructures are formed during
manufacturing processes and related to functionalities of the
optoelectronic composites.

The multifunctional composites can be paired with a light-
sourcing material (e.g. ML) to be free from dependency on
natural light source. Instead of using external light, if ML is
designed to be a component of themultifunctional composites,
light can be supplied on demand—when mechanical strain
occurs—to activate the multifunctional composites for sens-
ing mechanical strain [226]. Likewise, other types of lumin-
escent materials that glow in response to external stimuli in
different physical domains can be employed to be independ-
ent of the natural light source. Multifunctional composites can
be created to serve as a design platform for creating compos-
ites capable of multimodal and self-powered sensing, energy
conversion, and light supply. ML-based light sensor signal
can be efficiently processed to yield user friendly data by
using machine-learning algorithm to extract features from the
abundant light information.

Concluding remarks

Unique aspects of multifunctional optoelectronic composites
are attributed to the functional building blocks’ unique exhib-
iting light sensitive characteristics and multiphysics opto-
electronic and luminescent properties. Unlike conventional
sensors, the composites use light as an energy source to
perform as a self-powered sensing. In addition, multimodal
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sensing capability is enabled by selectively using different
ranges of light wavelengths to distinguish different sensing
modes. Discoveries in materials science enabled to invent
novel multifunctional composites for harnessing light energy
and using light as a sensor signal. Nevertheless, there are
some challenges to overcome for broadening applications
of the multifunctional optoelectronic composites as a novel
measurement technology for next generation SHM. Through
scientific and technological advancements, it is envisioned
that the sophisticated multifunctional optoelectronic compos-
ites can be systematically designed with solid understand-
ing about multiscale and multiphysics characteristics of the
functional building blocks used for devising the composites.

Also, materials characterization and multiscale simulation
tools are expected to improve understanding about processing-
microstructure-properties relationship of the multifunctional
optoelectronic composites.
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13. Robotically deployed sensors in construction
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Status

Sensor data underpin proactively-maintained built environ-
ments, and will support field-validation of the new low-carbon
construction designs and materials needed to achieve net-
zero [227]. Despite this being accepted for decades [228], the
continuous monitoring and inspection of civil infrastructure
remains sparse and infrequent in practice. Market failures that
have promoted technology stagnation in the construction sec-
tor can and should be blamed for this, but there is also a root
cause that engineers can address—today’s monitoring systems
are deployed by people.

Sensor technologies themselves are cheap; putting people
in hazardous environments to deploy them is not. Botched
monitoring campaigns cause unplanned delays to construc-
tion projects and asset utilization, costing organizations and
economies millions of dollars per day. ‘Who should pay
these costs?’ is arguably a premature question—many are
unwilling to accept the uncertain return on their investments
in monitoring—as data reliability depends significantly on
the quality of workmanship during deployment [229]. Even
trained operators make mistakes (and then promptly forget
them) [230]. Without intervention, systemic human errors will
continue to frustrate decision-makers, and damage industrial-
ists’ views of otherwise promising measurement technologies
[231, 232].

Automation could tackle these challenges. Robots can-
not (yet) match human dexterity, nor our ability to react to
unforseen challenges, but they can deliver remote, repeatable
and traceable sensor deployments at fixed cost.

Historically, robotic SHM has mainly focused on inspec-
tion rather than continuous monitoring, i.e. the robot retains
the sensors and performs discrete measurements in time.
Recent literature describes ground, wall-climbing, aerial, and
underwater robots for: (i) quasi- and fully- distributed map-
ping of structures’ local acoustic (e.g. ultrasound, ground-
penetrating radar), optical (infrared, LiDAR, visual) and elec-
trical (resistance or impedance) responses [233, 234], and; (ii)
setting up mobile sensor networks to monitor environmental
parameters (e.g. acceleration, temperature, radiation) using
on-board electronic sensors [235]. These systems are used to
assess damage indicators like vibration, corrosion, displace-
ment, scour, or sub-/surface cracking in buildings, bridges,
tunnels, and offshore assets.

There has been significantly less focus on robots to support
permanent sensor installations for continuous monitoring.
Noteworthy examples include the robotic installation of:
embedded strain sensors in precast concrete tunnel segments
[236]; 3D-printed and spray-coated self-sensing concrete
repair materials for strain and crack monitoring [237], and;
magnetic wireless nodes for monitoring offshore wind turbine

faults via changes in distance and other environmental
parameters [238].

Current and future challenges

Some of the future research challenges facing robotic sensor
deployment are not unique to the field [235, 239], and include
the development of: (i) resilient and manoeuvrable robots for
hazardous and complex environments; (ii) robust long-term
robotic navigation systems; (iii) optimal sensor placement
and inspection strategies in time and space; (iv) handling big
data and energy budgets; (v) data fusion from multiple sensor
modalities; and (vi) conducting extensive ground-truthed field
testing.

More unique challenges stem from the field’s need to
integrate robots, sensors, data analytics and manufacturing,
and including the development of: (vii) inspection systems,
sensors, smartmaterials and toolingwhich are compatiblewith
(and ideally take full advantage of) robotic sensor deployment;
(viii) fully-automated real-time decision making based on per-
ceived structural health; (ix) robotically-deployed active sens-
ing (where fixed sensors are excited by robots to measure local
responses); (x) robotic sensing for off-site construction man-
ufacturing, and; (xi) underwater construction sensing (enough
of a distinct challenge to warrant its own point!).

Finally, while they are not technical challenges: (xii) we
should adopt consistent terminology, as it will allow for more
rapid identification of gaps in knowledge; authors shouldmake
clear distinctions between inspection and continuous monit-
oring systems, and whether robots are being used to deploy
a temporary (i.e. delivered) or a permanent (i.e. installed)
monitoring solution; and (xiii) research should be done to
quantify the costs and benefits of using robotics (relative to
using people) in different construction sectors and nations, as
this will allow engineers to focus efforts on developing robotic
deployment strategies which have maximum impact.

Advances in science and technology to meet
challenges

Advances in soft robots may help us meet some of these chal-
lenges. Soft robots are good at manoeuvring in tight areas and
can keep their control electronics remote when the environ-
ment is radioactive [240]. The soft robot itself can even act as
a mobile sensor deployed by another robot [241].

Tooling for grasping and manipulation require ongoing
research to even begin approaching human dexterity, and fur-
ther research into artificial intelligence will be required for
robotics tomatch our ability to react to new events through pat-
tern recognition. If developed further, tactile skins [242] will
allow robots to apply pressure with high accuracy and preci-
sion; this will be useful for remote contact-based inspection
(e.g. acoustic and electrical tomography), sensor installation,
and active sensing.

Advances in the 3D printing of functionalized electrically-
conductive materials [243] can be adapted to robotic systems
for on-site or in-factory deployment. Indeed, any advances in
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additive, hybrid and digital manufacturing research should be
considered for robotic sensor installation.

Developments in machine learning, such as convolutional
and transformer neural networks [244], will support autonom-
ous analysis and decision-making both for robots and for
SHM. Exploration of how this dense information can be
optimally combined and leveraged will require further integ-
ration of robotic sensing platforms and artificial intelli-
gence with building information modeling [245]. Even alone,
machine learning algorithms for SHM could be deployed dir-
ectly on swarm robots as edge computing advances [246]. This
reduces wireless communication demand, conserving battery
power.

Concluding remarks

The last decade has seen rapid developments in robotic
inspection for construction, and its supporting research areas.
We should now complement this with robotically-installed

continuous monitoring systems for key SHM indicators like
strain. We will need to work more collaboratively than ever
before to integrate systems within this domain. Research-
ers who develop measurement and repair technologies should
consider integration with robotics early on; it could be the key
to de-risking deployment. There are opportunities for data ana-
lysts to explore the change to the cost/value of information
that stems from robotic sensing and its interplay with both
human decision support systems and fully autonomous robotic
decision-making. Robotics developers should support wider
access to their platforms, so that other developers can design
well-integrated systems; these could further enhance simultan-
eous localization and mapping using local construction fault
features.

Finally, companies and governments should support the
work with access to funding and field sites. Robotic sensing
shows significant promise in breaking construction stalemates
to unlock ubiquitous infrastructure monitoring, and with it a
slew of financial, economic, and environmental benefits.
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14. Robotics-based remote sensing and monitoring

Rebecca Napolitano1 and Fernando Moreu2

1 The Pennsylvania State University, State College, PA, United
States of America
2 University of NewMexico, Albuquerque, NM, United States
of America

Status

Remote sensing detects and monitors the physical properties
of an area by measuring reflected and emitted radiation away
from a region of interest. While there are various methods
of remote sensing, robotics-based remote sensing facilitates
human interaction beyond the realm of visual data and enables
physical properties of a structure to be queried.

Unmanned aerial vehicles (UAVs) have gained traction
for SHM applications over the last decade (figure 21). As
the area of sensors and cameras is advancing, many unique
platforms can be developed for UAV integrated instruments;
which provide high spatial resolution data integrate directly
with different sensors such as RGB cameras or LiDAR. Look-
ing forward, the prospects of remote sensing data analysis
will continue to improve as machine learning, artificial intel-
ligence, and computer vision techniques enhance the facilitate
live UAV data analysis (figure 22) [248–251].

Presently in SHM, there are many studies investigating dif-
ferent light-weight sensors on UAV. For example, researchers
have used RGB cameras on UAVs to collect 3D data automat-
ically. Morgenthal and Hallermann discussed the flight prop-
erties of UAVs and the resulting influencing factors on the
image quality [252]. Roca et al utilized a combination of a
lightweight laser scanner and a UAV for generating 3D point
clouds for building assessment [253]. As stated above, the sys-
tems typically consist of one UAV with a special sensor which
covers a specific application. As camera technology is con-
tinuously evolving, image quality and resolution will continue
to improve for SHM applications.

Controlling the flight path of the UAV can be done using
remote control. However, applying automated path planning
will lead to an automatically calculated optimal flight path.
Path planning of UAVs should consider obstacle avoidance,
maximum coverage, sensor limitations, vehicle motions, and
time and cost-efficiency. Some methods such as wavefront
algorithm [254], spanning tree algorithm [255], and neural
network [256] are used to compute the flying path in a sim-
plified grid space. Other methods, such as traveling salesman
problem, focus on finding the shortest path passing through
pre-defined viewpoints [257, 258].

Considering continued advancements in other aspects of
UAVhardware, multi-rotor UAVs offer great promise for SHM
as they canmaintain a stable position without muchmovement
or vibration even in windy conditions [259]. Additionally,
recent advances in visual navigation systems have allowed
UAVs to hover in place without the need of a strong GPS
signal by using optical, infrared, and/or ultrasonic sensors
[260, 261].

Considering the accuracy and sensitivity of this as a SHM
tool, UAVs were used to detect displacement in a large
retaining wall with high accuracy using photogrammetric
methods and computer vision algorithms in the aforemen-
tioned study by Hallermann and Morgenthal [252]. Validation
was done by intentionally removing some bricks and replacing
them with thinner plates to simulate movement, and the UAV
images were able to accurately detect displacement. In another
study by Polydorou et al [262], digital cameras on UAVs were
used tomeasure deflection of a bridgewith high accuracy com-
pared to traditional displacement gauge sensors. However, it
was found that the accuracy of UAV-based deflection meas-
urements are dependent on the accuracy of the UAV move-
ment. Garg et al [249, 263], Nasimi and Moreu [248, 264]
and Nasimi et al [265] studied the effect of UAV movement
in the accuracy of displacement measurements both indoor
and outdoor in the context of bridges SHM and railroad bridge
management. For additional commentary on the accuracy and
sensitivity of UAVs for civil SHM, the reader is suggested
to view Sreenath et al [266]. Overall, UAVs show potential
for accurately monitoring the structural health of bridges, but
careful consideration must be given to the accuracy and sens-
itivity of the sensors used and the movement of the UAV itself.

Current and future challenges

Although the UAVs have notably improved over the last dec-
ade, there are two different types of challenges impeding
research in robotics-based remote sensing for SHM; these
include (1) policy-centered challenges and (2) hardware and
software integration challenges.

In the US, the Federal Aviation Administration regulates
UAVs via the Code of Federal Regulations Part 107. One of
the main policy-centered issues faced by UAV SHM research-
ers is the Part 107.31 rule which specifies that the pilot and
an observer must be able to see the UAV throughout the
entire flight [267]. While this could be feasible in some scen-
arios, there are many where it would not be; during post-
disaster reconnaissance, it may be unsafe for researchers to
enter a building to keep a line of sight. Additional policy-
centered challenges are emerging as more research considers
multi-drone SHM teams [268, 269]. Part 107.35 prohibits a
person from acting as the flight controller, remote pilot, or
visual observer in the operation of more than one UAV at a
time [270]. Thus if a researcher wanted to examine how a
swarm of five drones could inspect a structure, they would
need ten people. Furthermore, rules of engagement between an
autonomous agent and a remote pilot are not clarified. Thus,
current policy impedes real-world testing and research of fully
autonomous UAV-based SHM.

Hardware and software integration challenges span from
battery life to behavior in inclement weather and remote areas.
Battery life plays a vital role in cases when a longer time of
flight is needed but it is also key to enable the integration of
new sensors in the robots being used. Increased capacity for
a more powerful battery currently stands in opposition to the
increased weight of the system which can further reduce the
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Figure 21. Number of publications per year indexed in the Scopus scholarly database. Keywords included the following search conditions
(1) ‘structural health monitoring’ or ‘SHM’ and (2) ‘drone’ or ‘UAV’ [247].

Figure 22. Robotics-based monitoring examples: (left) new aerial system of intelligent measurement integration (NASIMI) [248, 249];
(right) rock-slide detection using machine learning with BRUTUS [250, 251].

time of flight for a device. Furthermore, manufacturing cost
could increase, which affects the system’s performance. An
additional physical challenge when using UAV for SHM is
that they are susceptible to weather conditions and they can-
not maneuver appropriately in unfavorable climatic circum-
stances. Windy weather not only deviates a UAV’s path, but
also it contributes vibration which directly impacts the quality
of data. Furthermore, inmany places, it is hard to havewireless
communication. As a UAV needs reliable network connectiv-
ity to be able to transmit data and location between pilot and
UAV, this jeopardizes the robustness of data collection in more
remote areas.

While the results of previous practical studies realized with
the UAV system indicate the potential of UAV-based inspec-
tion, there are other software-centered limitations. The accur-
acy of the rough point cloud data based depends directly on
the accuracy of the determined UAV pose. A second aspect

is to evaluate the improvement of image quality by using a
spotlight. That is an essential fact to guarantee a complete
inspection also of poorly lit bridge areas. Finally, the usab-
ility of appropriate indices and orthophoto mosaic for bridge
inspection needs more effort to investigate.

Advances in science and technology to meet
challenges

For many policy-centered challenges to be surmounted,
experimental testing, best practices development, and valid-
ation studies must be carried out by the SHM community.
With regard to the line-of-sight challenge, one organization
has been able to successfully gain a waiver under certain
circumstances [271]. The argument for this exception required
documentation of the need and experimental verification of
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performance under the given circumstances. The SHM com-
munity will need to perform similar studies if we aim to move
towards using UAV to monitor structures preventatively rather
than reactively. Similarly, experimental testing and valida-
tion using multi-UAV teams needs to be carried out for SHM
applications to examine and demonstrate the safety capacity
of swarm algorithms. Regarding the current lack of proced-
ure when two autonomous systems interact, regulations for
September 2023 will require all UAV to comply with new
Remote ID requirements; any UAV that are not compliant, will
not be able to be used. This change in policy could help SHM
researchers build the case for allowing autonomous SHMsens-
ing and monitoring. This policy would force all UAVs to be
able to communicate consistently with each other; this would
facilitate predicated rules of engagement for when two differ-
ent robots, where either one or both are autonomous, meet.

To rise above many of the existing challenges previously
presented, the following areas are suggested for development
and research in the next decade:

• Development of new hardware-software integration for
high-rate DAQ, including data fusion, event-based computer
vision sensing, and low-cost sensor integration that enables
a faster rate of discovery and integration.

• Increase exploration on human-robotics interfaces with
new data visualization, Augmented Reality, pilot-inspector-
engineer hands-free control of robotics.

• New outdoor testing environments that enable testing out-
side the implementation of robotics, sensors, and inspections
with human in the loop validation, including monitoring of
UAV trajectory and algorithms outdoors, large scale valid-
ation, and below water robotic inspection of structures and
environments.

Concluding remarks

As, the price and size of a complete system have reduced
considerably, this technology has become more accessible
for government and research institutions for SHM applica-
tions. As UAVs continue to become more user-friendly and
affordable, their ubiquity will catalyze further opportunities

for novel SHM data analysis workflows. There are many
additional challenges on the horizon and it is clear that sci-
ence and policy will need to work together. Some of those
challenges include cybersecurity concerns in SHM in the con-
text of smart cities, human-in-the-loop decisions, national
and global security, and public-private involvement in policy
development that drives new laws and regulations. Finally,
there are educational opportunities in K-12 and College to
assist to train the future worker with the required skills to work
on addressing these challenges and leading new areas still to
be identified.
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Status

Recent developments in satellite monitoring technology have
shown enormous potential in detecting buildings and infra-
structure deformations, which are often connected to early
signs of structural distress. The possibility to measure dis-
placements remotely, with high level of accuracy and frequent
updates, can overcome some of the limitation of in-situ inspec-
tions, which are typically labor-extensive, time consuming and
only performed every few years. Satellite-based monitoring
can therefore effectively complement traditional methods for
structural condition assessment.

SAR satellites senses the Earth’s surface by emitting elec-
tromagnetic waves and analyzing the target backscattered sig-
nal (figure 23). The phase of the signal contains information
about the distance between the sensor and the target [272].
Multi-temporal interferometric SAR (MT-InSAR) techniques
exploit multiple images (generally >20) for mitigating noise
effects due to the atmosphere to estimate the target relative
displacement between multiple acquisitions in time [273].

The use of microwave band enables day-and-night and
weather-independent measurements, which are updated with
weekly frequency. With the launch of more satellites into the
same orbit, MT-InSAR deformation measurements can now
reach millimeter accuracy in urban areas [274]. These fea-
tures, combined with dense and large spatial coverage, and
the possibility to access archived images for retrospective ana-
lysis of unmonitored structures, have driven in the past decade
a rapidly increasing use of InSAR data for civil engineering
applications.

MT-InSAR techniques allow the extraction of displace-
ment time-series for targets that show stable reflective prop-
erties in time. Thanks to their physical nature, buildings and
civil infrastructure can provide a high number of these tar-
gets, making MT-InSAR monitoring particularly effective in
urban areas (figure 24). In the past decades, extensive liter-
ature has focused on proving the reliability of MT-InSAR to
accurately measures deformations of different types of struc-
tures. Most of these studies have concentrated on cross valid-
ation of satellite-based monitoring through comparison with
independent ground-based measurements for real case stud-
ies. Examples included buildings [275, 276], railways [277],
roadways [278, 279], dams [280] and bridges [281, 282]. An
extensive literature review on MT-InSAR civil engineering
application can be found in [279].

Figure 23. Schematic representation of InSAR acquisition
geometry and target displacement estimation.

Based on these promising results and the rapid development
of the field, MT-InSAR approaches have the potential to move
from retrospective analyses to early detection of anomalies and
decision-making support for infrastructure maintenance prior-
itization.

Current and future challenges

InSAR data have been proven effective in monitoring urban
areas and infrastructure, both at asset level [281, 282] and
at network scale [279]. However, there are still challenges
to overcome for a full integration of satellite-based monitor-
ing within regular inspections and assessment activities. These
challenges depend on inherent features of both sensors and
data processing, which are substantially different from most
monitoring systems commonly applied to civil engineering
structures.

First, InSAR data have specific geometrical limitations.
While for traditional monitoring systems the direction of
measured displacements is pre-defined or known, InSAR can
only measure the displacement component along the satellite
Line of Sight (figure 23). Furthermore, the near-polar orbit
of SAR satellite makes them less sensitive to north-south dis-
placements, even when the availability of data from different
orbit trajectories enable to estimate the projected vertical and
horizontal displacements.

Second, the number of available monitored points is not
uniformly distributed all over the Earth’s surface, and their loc-
ation is not known a-priori. The density of points depends on
satellite coverage and quality of the reflected signal. This could
be limiting for rural areas, which are typically characterized by
a lower density of monitored points, and small infrastructure,
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Figure 24. InSAR cumulative displacements (top) highlighting the
subsidence induced by the Crossrail tunnel excavation in London
(bottom left). Data from April 2011 to December 2011. Negative
values indicate movements away from the satellite. At building level
(bottom right), the satellite-based displacements can identify the
profile of the building differential settlements.

like short bridges, for which the number of points might not
be sufficient to interpret structural deformations.

Third, while the wide-area coverage of SAR satellites
enables the analysis of displacement phenomena at regional
scale, the accurate transformation of signal phase information
into displacement measures requires some preliminary know-
ledge of the type of deformation being observed, e.g. slowly
vs rapidly progressing, or spatially localized vs distributed
over a large area. Wrong assumptions on the linearity of the
deformation process could for example lead to underestim-
ate movements which are characterized by highly nonlinear
behavior. Additionally, the maximum deformation rate that
can be estimated by InSAR techniques is limited by the sig-
nal wavelength, satellite revisit time and specific processing
techniques.

Finally, the current and future satellite constellations spe-
cifically dedicated to surface displacement measurements is
creating increasingly large volumes of data. The full exploit-
ation of these data will require new storage, processing, and
interpreting strategies. A more in-depth discussion of current
challenges and promising solutions for InSAR infrastructure
monitoring is presented in [283].

Advances in science and technology to meet
challenges

InSAR geometry related limitations, such as the assumptions
made for projecting InSAR LoS displacements in 3D, can be
improved using InSAR data from multiple orbits and different
sensors. The processing of data acquired from different incid-
ence angles, ascending and descending orbits and left/right
looking view can facilitate decomposition in vertical and east-
west displacement projection [284]. This possibility will be
maximized by the new SAR missions which are planned to be
launched in the coming years [285], leading to the acquisition
of different set of measurements for the same areas.

To increase the availability of monitored targets, techniques
are being developed to exploit the target reflectivity even on
limited time intervals, e.g. [286]. Such improvements can help
in situations of poor signal reflectivity, induced for examples
by snow, flooding or structural rapid changes. Furthermore,
the availability of targets on specific and pre-defined locations
can be guaranteed through the installation of corner reflect-
ors which can provide a stable signal. Additionally, the use
of virtual simulators [287] can help predicting the density and
likely location of targets over a certain area of interest prior to
the actual data processing.

Shorter time intervals between subsequent DAQs are
required to improve the performance of current nonlinear
approaches, which are more likely to capture rapidly changing
displacements [273]. Also in this case, the shorter revisit times
expected from future SAR satellite constellations have the
potential to expand SHM applications. Integration with inde-
pendent ground-based measurements [288] and SAR tech-
niques exploiting the signal amplitude [289] can also support
the validation of modeling assumptions.

Machine learning techniques can be used to process
and interpret the growing volume of InSAR available data.
Examples are the application of neural network approaches
to the analysis of displacement measurements on large scale
[290] and the automated detection of anomalous points in
displacement time series [291]. Overall, the effective use of
MT-InSARmeasurements to support buildings and infrastruc-
ture condition assessment depends on a clear understanding
of the effect of assumptions and input parameters on the data
processing and of the structural response connected to the
monitored deformations. This ultimately calls for a stronger
cooperation among remote sensing experts, data scientists and
civil engineers.

Concluding remarks

Radar interferometry can provide high-resolution, frequent
and spatially dense measurements of structural deforma-
tions, complementing in situ conventional monitoring and
offering an unmatched solution for regional scale and long-
term monitoring. Current limits to a systematic use of
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InSAR measurements for SHM of buildings and infrastruc-
ture are related to (a) the challenge of decomposing the one-
dimensional displacement projection as it measured by the
satellite along its LoS, into the actual three-dimensional dis-
placement components which are needed to interpret structural
deformations, (b) the availability, location and distribution of
monitored points for each single structure, (c) the depend-
ence of measurement accuracy on modeling assumptions, sig-
nal wavelengths and other satellite and processing algorithm
features, and (d) the challenge of storing, processing and inter-
preting the increasingly large amount of acquired data.

The current and coming availability of SAR satellites spe-
cifically dedicated to surface deformation detection, as well as
the rapid advance of MT-InSAR algorithms, are expecting to
play a key role in addressing these challenges. Such develop-
ments could rapidly lead into a future routinary use of InSAR
data to support early warning systems and maintenance plan-
ning tools.
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