
____________________________________________________________________________________________

*Corresponding author: E-mail: rao@c3dna.com;

Advances in Research
2(4): 207-224, 2014, Article no. AIR.2014.003

SCIENCEDOMAIN international
www.sciencedomain.org

Infusing Intent and Its Management into Turing
Machine: A Path to Cognitive Distributed

Computing

Rao Mikkilineni1*

1C3 DNA, 2520 Mission College Boulevard, Suite 110, Santa Clara, California 95054,
United States.

Author’s contribution

This whole work was carried out by the author RM.

Received 30th December 2013
Accepted 23rd February 2014

Published 13th March 2014

ABSTRACT

The holy grail of Artificial Intelligence (AI) has been the reproduction of the cognitive
processes in Silicon based computing machines to mimic the human or animal cognitive
behavior. Computationalism attempts to explain cognition in terms of different internal
representations and symbol-manipulating processes operating over these
representations. On the other hand, Connectionism explains cognition in terms of a finite
automaton which computes associative function specified by a set of input-output pairs
that in turn, introduce interaction into the computing model.  However, both theories have
critics who believe that they fall short in explaining the cognitive processes observed
either in humans or animals. Computationalism tied to the Turing computing model which
is restricted to single, sequential processes does not support concurrency, mobility and
synchronization observed in cognitive processes. The connectionist systems are also
dedicated to single tasks and do not support complex environments which require
behaviors that are coordinated and integrated. Above all, cognition is associated with
intent of a system and its accomplishment efficiently through various processes that
monitor and control itself and its environment. Any computing model incorporating
cognition must accommodate dynamic coupling between various elements of the system,
where each change in one element continually influences every other element’s direction
of change. We discuss the newly introduced DIME (distributed intelligent managed
element) computing model which is shown to be one of the implementing architectures for
π–calculus and argue that its non-von Neumann parallel implementation of a managed

Original Research Article



Mikkilineni; AIR, Article no. AIR.2014.003

208

Turing machine with a signaling network overlay addresses some of the limitations of both
Computationalism and Connectionism. The DIME network architecture provides a
mechanism for injecting sensors and actuators into a Turing Machine and allows
implementing autonomic distributed computing where the computers and the programs
they execute are orchestrated to achieve the overall intent while optimizing the computing
resources available.

Keywords: Computationalism; connectionism; cognitive process; turing machine; AI; DIME
network architecture; genome; connectome; turing o-machine

1. INTRODUCTION

As McLaughlin [1] points out “The Holy Grail of the field of artificial intelligence is to build
something with mental abilities out of something other than living tissue.” This is a tall order
given the mental abilities are supported by about hundred billion neurons each having tens
of thousands of synapses interconnecting them. Each neuron in turn is designed over a long
period of time evolving from a simple single-celled organism to the complex multi-celled
organism with a gene describing the form and the function of each cell and how to
orchestrate trillions of them constituting one individual. However, it is remarkable that both
good old fashioned artificial intelligence (GOFAI) and connectionist models have made
significant contributions with simplistic models to mimic a small set of mental abilities. GOFAI
infers a logic-like internal representation system where inner states are symbols and the
interactions are syntactic and formal. It is believed that, with enough explicitly coded
knowledge, heuristics and axioms, a machine could develop intelligence. The Connectionist
model, on the other hand,  assumes that the information is stored in the connections among
a network of nodes, and not the nodes themselves, making the knowledge implicit in the
structure and not explicit in the individual nodes (in the case of brains, the individual units
being neurons). Thus the information, or knowledge, if it has a physical existence, must exist
within the networks of constantly firing neurons.

More recently, both models have been criticized as inadequate [2,3] to model the complex
cognitive processes supported by the neural networks in the brain and suggest that a new
model is required to address the embodied, embedded, enacted and extended mental
processes involved in the living systems and their environment. In this paper we examine
both the Computationalism and Connectionism approaches to AI and propose a new
approach that goes a step further. We discuss the newly introduced DIME (distributed
intelligent managed element) network architecture [4,5] modeled after a network of Turing O-
machines with an overlay of a control network over the conventional Turing machine network
and its expressive power to not only describe and execute a process but also include a
control architecture that allows dynamic regulation and orchestration of various executing
processes. We argue that this architecture provides a way to include the concept of self
identity and model interactions between the self and the environment to provide autonomic
process execution with available resources. In addition, the recursive network composition
scheme which the model provides to create managed network of networks allows highly
scalable dynamic process-flow implementation with global optimization of resources. The
DIME network architecture provides both functional and non-functional behavior modeling
and execution in an integrated fashion and enhances current autonomic computing models.
In Section II, we examine both Computationalism and Connectionism and their critique along
with some thoughts on cognition and computing. In Section III, we present the DIME network



Mikkilineni; AIR, Article no. AIR.2014.003

209

architecture and discuss its expressive power as one implementation architecture for π-
calculus. In Section IV, we present ways to exploit the DIME network architecture to
implement cognition in computers. In Section V, we conclude with some observations and
remarks on future direction.

2. CURRENT MODELS OF ARTIFICIAL INTELLIGENCE

2.1 Computationalism

According to the computational theory of mind [2], all cognitive functions can be computed
by algorithms – effective procedures. According to the Church–Turing thesis, every function
that can be computed by an algorithm can be computed by a Turing machine. If the Church–
Turing thesis is correct, then the computational theory of mind is committed to the thesis that
every cognitive function is Turing-computable. This then, assures that all cognitive
processes can be realized in silicon using the Universal Turing Machine (UTM)
implementation with von Neumann serial stored program control computing model.

As Louis Barrett [6] points out, the theory gravitates towards those cognitive tasks like
natural language, formal reasoning, planning, mathematics, and playing chess, in which the
processing of abstract symbols in a logical fashion. It does not take into account an active
organism’s synergistic interactions of the mind, body and the environment where the notion
of dynamic coupling (each change in one element of a system continuously influences every
other element’s change) is not taken into account. This observation is consistent with the
conclusion [7] “the key property of general-purpose computer is that they are general
purpose. We can use them to deterministically model any physical system, of which they are
not themselves a part, to an arbitrary degree of accuracy. Their logical limits arise when we
try to get them to model a part of the world that includes themselves”. These observations
show a need for a computing model which includes both functional and non-functional
(related to the resource availability to execute the function) behavior.

2.2 Connectionism

A connectionist network is composed of interconnected units (or nodes). Individual units do
all the information processing: there is thus no executive or CPU. There is, moreover, no
program stored in memory; the program is implicit in the pattern of connectivity exhibited by
the units. Many units process information simultaneously, and so the network as a whole
engages in parallel distributed processing (PDP).

The Connectionism [2] suggests that the brain is a neural network that computes by non-
symbolic means, principally by the summation of multiple inputs and the adjustment of
connection strengths. While they can model temporal sequences, the standard connectionist
models are not sufficiently powerful because they do not include reliable structure in the
environment. In addition, “connectionist modelers tend to think in terms of single tasks and
the most common forms of network are not good at handling multiple tasks which interact”.
The solution he suggests is “to recognize that the connectionist networks are finite automata
and to use Turing’s analysis to understand the role they should play in a theory of the mind”.
According to Mark Rowlands [3] the Cartesian approaches based on rules and
representations fall short to model the cognitive processes and perhaps other mental
processes because they do not incorporate what organisms achieve by what they do in and
to the world that is outside their brains –whether their bodies or the wider environment and



Mikkilineni; AIR, Article no. AIR.2014.003

210

not just something occurring exclusively inside their brains. The Cartesian approach
depends on information-bearing structures known as mental representations solely located
in the brain of cognizing organisms about the world and their operations. He argues that the
Cartesian approach is limited and does not address the external structures, which contain
the information relevant to the accomplishing the task at hand. The cognitive processes
often transform the information they contain by using such structures in appropriate ways.
The cognitive processes also exploit detection of the information required for further
evolution by using the external structures rather than storing or constructing it. He points out
that control of external structures is an important part of the cognitive process, which
presumes intent.

The long and short of the discussion is that we must understand cognitive processes and
their execution in an organism before we can replicate it in Silicon. Current understanding
based on Computationalism and Connectionism seems to fall short. Therefore, we must look
elsewhere for further progress. Recent advances in biology and neuroscience address the
processes of managing and safekeeping of life and developing intelligence and the
relationships among them [8,9,10].

DNA encodes the information required to evolve a single cell carrying it into a fully functional
organism with form and function designed to manage its life. According to Antonio Damasio
[11], managing and safe keeping life is the fundamental premise of biological value and this
biological value has influenced the evolution of brain structures. “Life regulation, a dynamic
process known as homeostasis for short, begins in unicellular living creatures, such as
bacterial cell or a simple amoeba, which do not have a brain but are capable of adaptive
behavior. It progresses in individuals whose behavior is managed by simple brains, as in the
case with worms, and it continues its march in individuals whose brains generate both
behavior and mind (insects and fish being examples)”. Homeostasis is the property of a
system that regulates its internal environment and tends to maintain a stable, constant
condition of properties like temperature or chemical parameters that are essential to its
survival. System-wide homeostasis goals are accomplished through a representation of
current state, desired state, a comparison process and control mechanisms.

He goes on to say that “consciousness came into being because of biological value, as a
contributor to more effective value management. But consciousness did not invent biological
value or the process of valuation. Eventually, in human minds, consciousness revealed
biological value and allowed the development of new ways and means of managing it”. The
governance of life’s processes is present even in single-celled organisms that lack a brain
and it has evolved to the conscious awareness, which is the hallmark of highly evolved
human behavior. “Deprived of conscious knowledge, deprived of access to the byzantine
devices of deliberation available in our brains, the single cell seems to have an attitude: it
wants to live out its prescribed genetic allowance. Strange as it may seem, the want, and all
that is necessary to implement it, precedes the explicit knowledge and deliberation regarding
life conditions, since the cell clearly has neither. The nucleus and the cytoplasm interact and
carry out complex computations aimed at keeping the cell alive. They deal with the moment-
to-moment problems posed by the living conditions and adapt the cell to the situation in a
survivable manner. Depending on the environmental conditions, they rearrange the position
and distribution of molecules in their interior, and they change the shape of sub-components,
such as microtubules, in an astounding display of precision. They respond under duress and
under nice treatment too. Obviously, the cell components carrying out those adaptive
adjustments were put into place and instructed by the cell’s genetic material.”



Mikkilineni; AIR, Article no. AIR.2014.003

211

This vivid insight brings to light the cellular computing model that:

1. Spells out the computational workflow components as a stable sequence of patterns
that accomplishes a specific purpose,

2. Implements a parallel management workflow with another sequence of patterns that
assures the successful execution of the system’s purpose (the computing network to
assure biological value with management and safekeeping),

3. Uses a signaling mechanism that controls the execution of the workflow for gene
expression (the regulatory network) and

4. Assures real-time monitoring and control (homeostasis) to execute genetic
transactions of replication, repair, recombination and reconfiguration [12].

The specialized cell called the neuron plays a key role in defining organism’s intelligence.
With over a billion neurons, the brain is organized to perceive, think and carry out mental
feats. According to Seung [10] the function of a neuron is defined chiefly by its (input and
output) connections with other neurons and these connections explain memory and other
mental phenomena, in addition to perception. He suggests that a map of neural connections,
which he calls a connectome, defines uniquely each individual’s memories, beliefs and
behavior. Just as genome defines the evolution of the structure and function of the
organism’s body, the connectome define the organism’s dynamical behavior executing
cognitive processes.

2.3 Non-functional Requirements, Autonomic Computing Sensors, Actuators,
and Turing Machines

A non-functional requirement is a requirement that specifies criteria that can be used to
judge the operation of a system, rather than specific behaviors. This should be contrasted
with functional requirements that define specific behavior or functions. The plan for
implementing functional requirements is detailed in the system design. The plan for
implementing non-functional requirements is detailed in the system architecture. These
requirements include availability, reliability, performance, security, scalability and efficiency
at run-time. Autonomic computing is the ability of a system designed to adapt to change in
accordance with business policies and objectives. In an autonomic environment,
components work together, communicating with each other and with high-level management
tools. They can manage or control themselves and each other. Components can manage
themselves to some extent, but from an overall system standpoint, some decisions need to
be made by higher level components that can make the appropriate trade-offs based on
policies that are in place. The autonomic computing models suggest that self-management
properties can be implemented if sensors and controllers are introduced into an element and
the knowledge is provided for managing it [13]. Fig. 1 shows the MAPE-K (Monitor, Analyze,
Plan, and Execute using Knowledge) model of autonomic computing. The monitoring and
execution at run-time using the sensor and the actuator provide the ability to respond to
environmental changes while the system is active. The autonomic computing model
supports recursive (fractal) scale-invariant management processes that scale to manage a
system of systems as long as sensors and actuators are available. This model has
successfully been exploited to model and control many systems where functional
requirements address business processes, robotics and other complex systems. However,
addressing non-functional requirements which deal with the system resources such as
computing resources, network resources and storage resources at run time is another



Mikkilineni; AIR, Article no. AIR.2014.003

212

matter. Different architectures and many implementations have contributed to the progress
of the autonomic computing discipline [14].

Fig. 1. The autonomic computing model

Object, component, service, and agent orientation paradigms have emerged as major
paradigms for implementing autonomous distributed systems. Nonetheless, it is argued [15]
that “none of these paradigms is able to adequately describe all kinds of distributed systems
and inherent conceptual limitations exist.” While each paradigm addresses some aspects of
distributed computing, none of them are capable of supporting concurrency, distribution, and
non-functional aspects such as availability, reliability, performance, scalability and end-to-
end transaction security. These authors propose an extension by combining agent and
service component architecture to create an active component which provides a hierarchical
composition scheme to implement managed workflows. Another effort that defines a
computing model that supports self-resiliency at both the node and network level is the
FRACTAL component model [16]. However, all these ad hoc approaches to distributed
computing depend on their implementations on an SPC (stored program control)
implementation of the Turing machine which is constrained by its serial implementation of
computations. In this paper we present a solution by introducing the sensors and actuators
in the Turing machine using the Turing O-machine discussed in Turing’s thesis [17] which
allows autonomic management of non-functional requirements along with functional
requirements.

2.4 Cognition and Computing

The cognitive processes are executed in the mind/brain system using a complex web of
cellular structures that have been refined over a long period of time through evolutionary
principles. Current neuroscience findings attribute the uniqueness of an individual to both the
genome (which consists of a sequence of nucleotides in the individual cellular DNA) and the
connectome [10] (which is a network of special cells called neurons.)

The genes are shorter segments in the genome which give the form and function of cellular
structures which cooperate and collaborate through complex managed processes that
provide a unique self with a mission that optimizes the resources available, interacts with its



Mikkilineni; AIR, Article no. AIR.2014.003

213

environment and evolves to preserve and propagate itself using the genetic transactions of
replication, repair, recombination and reconfiguration [12]. The genes provide the definition
of both the tasks and their management. As Mitchell Waldrop explains in his book on
Complexity [18] “the DNA residing in a cell’s nucleus was not just a blue-print for the cell – a
catalog of how to make this protein or that protein. DNA was actually the foreman in charge
of construction. In effect, was a kind of molecular-scale computer that directed how the cell
was to build itself and repair itself and interact with the outside world.” The genes equipped
with the descriptions of tasks and their regulation, proceed to manufacture the body as soon
as the full description of the genome is put together by the joining of the egg and the sperm.
According to Dawkins [19] “The manufacture of a body is a cooperative venture of such
intricacy that it is almost impossible to disentangle the contribution of one gene from that of
another. A given gene will have many different effects on quite different parts of the body. A
given part of the body will be influenced by many genes, and the effect of any one gene
depends on interaction with many others. Some genes act as master genes controlling the
operation of a cluster of other genes.”

In a very short period of time compared to the gestation period, the basic body plan of the
embryo becomes established. During this time an apparently homogeneous group of cells,
the inner cell mass of the blastocyst, becomes transformed into various parts consisting of
specialized cells all arranged in correct positions relative to one another. Cells in different
regions become switched on to different pathways and the evolution is orchestrated based
on the local resources, functional requirements and interactions with other cells. The main
point is that the description of the functioning of individual cells and the orchestration of
groups of cells are given in the genetic DNA. Not only the function to be performed in each
cell but also its context, constraints, communication, connections and control mechanisms
are specified. In addition, a hierarchical composition scheme provides same abstractions
involving a group of cells or groups of groups constituting the whole system. Armed with the
full description of the genetic processes along with their regulation, the form and functions
evolve from the embryo to create a multitude of cells with a multitude of specialized functions
such as a liver cell, a heart cell etc. One specialized cell, the neuron plays a very special role
in creating the essence of cognition and consciousness.

The managing and safekeeping of life efficiently are evident at the lowest level of biological
architecture that provides the resiliency that von Neumann was discussing in his Hixon
lecture [20]. ‘‘The basic principle of dealing with malfunctions in nature is to make their effect
as unimportant as possible and to apply correctives, if they are necessary at all, at leisure. In
our dealings with artificial automata, on the other hand, we require an immediate diagnosis.
Therefore, we are trying to arrange the automata in such a manner that errors will become
as conspicuous as possible and intervention and correction follow immediately’’. Comparing
the computing machines and living organisms, he points out that the computing machines
are not as fault tolerant as the living organisms. He goes on to say ‘‘It’s very likely that on the
basis of philosophy that every error has to be caught, explained, and corrected, a system of
the complexity of the living organism would not run for a millisecond.’’

The connection between consciousness and computing models is succinctly summarized by
Samad and Cofer [21]. While there is no accepted precise definition of the term
consciousness, “it is generally held that it is a key to human (and possibly other animal)
behavior and to the subjective sense of being human. Consequently, any attempt to design
automation systems with humanlike autonomous characteristics requires designing in some
elements of consciousness. In particular, the property of being aware of one’s multiple tasks
and goals within a dynamic environment and of adapting behavior accordingly.” They point



Mikkilineni; AIR, Article no. AIR.2014.003

214

to two theoretical limitations of formal systems that may inhibit the implementation of
computational consciousness and hence limit our ability to design human-like autonomous
systems. “First, we know that all digital computing machines are “Turing-equivalent”-They
differ in processing speeds, implementation technology, input/output media, etc., but they
are all (given unlimited memory and computing time) capable of exactly the same
calculations. More importantly, there are some problems that no digital computer can solve.
The best known example is the halting problem; we know that it is impossible to realize a
computer program that will take as input another, arbitrary, computer program and determine
whether or not the program is guaranteed to always terminate.

Second, by Gödel’s proof, we know that in any mathematical system of at least a minimal
power there are truths that cannot be proven. The fact that we humans can demonstrate the
incompleteness of a mathematical system has led to the claims that Gödel’s proof does not
apply to humans”.

As pointed out in the introduction, Louis Barrett highlights [6] the difference between Turing
machines implemented using von Neumann architecture and biological systems. “Although
the computer analogy built on von Neumann architecture has been useful in a number of
ways, and there is also no doubt that work in classic artificial intelligence (or, as it is often
known, Good Old Fashioned AI: GOFAI) has had its successes, these have been somewhat
limited, at least from our perspective here as students of cognitive evolution.” She argues
that the Turing machines based on algorithmic symbolic manipulation using von Neumann
architecture, gravitate toward those aspects of cognition, like natural language, formal
reasoning, planning, mathematics and playing chess, in which the processing of abstract
symbols in a logical fashion and leaves out other aspects of cognition that deal with
producing adoptive behavior in a changeable environment. Unlike the approach where
perception, cognition and action are clearly separated, she suggests that the dynamic
coupling between various elements of the system, where each change in one element
continually influences every other element’s direction of change has to be accounted for in
any computational model that includes system’s sensory and motor functions along with
analysis. To be fair, such couplings in the observed can be modeled and managed using a
Turing machine network and the Turing network itself can be managed and controlled by
another serial Turing network. What is not possible is the tight integration of the models of
the observer and the observed with a description of the “self” using parallelism and signaling
that are the norm and not an exception in biology.

3. THE DIME NETWORK ARCHITECTURE

The cognitive process execution and management needs to support, use and accommodate,
among others, the following:

 Self-identity
 Recursive composition scheme and scale-invariant self-management process

structures
 Sequential and parallel process flows,
 Dynamic provisioning of appropriate resources to assure process flow execution,
 Multiple dynamically assignable communication channels,
 Fault tolerance to process, communications or infrastructure failure,
 Process and infrastructure level security, and



Mikkilineni; AIR, Article no. AIR.2014.003

215

 Run-time monitoring and control of resources to meet changing process priorities,
latency constraints and workload-fluctuations caused by interactions with the
environment.

In short, the cognitive process requires active management of dynamic coupling between
various elements of the system, where each change in one element influences some other
element’s direction of change while its computation is still in progress and must be
accounted for in any computational model.  In addition, the resulting changes in
computational resource requirements caused by the non-deterministic influences of various
changes in the overall system have also to be dynamically managed.

The Turing machine is an abstract model that uses an instruction cycle,{read -> compute
(change state) -> write} to “replace a man in the process of computing a real number (using
a paper and pencil) by a machine which is only capable of finite number of conditions.” In
modern terms, a program provides a description of the Turing machine and the stored
program control implementation in some hardware allows its execution. A universal Turing
machine is also a Turing machine but with the ability to simulate a sequence of synchronous
Turing machines each executing its own description. This allows a sequence of programs to
model and execute a description of the physical world. However, the Turing’s system is
limited to single, sequential processes and is not amenable for expressing dynamic
concurrent processes where changes in one process can influence changes in other
processes while the computation is still in progress in those processes. Concurrent task
execution and regulation require a systemic view of the context, resource constraints,
communication, connections and control abstractions where the identities, autonomic
behaviors and associations of individual components also must be part of the description.
However, an important implication of Gödel’s incompleteness theorem [22] is that it is not
possible to have a finite description with the description itself as the proper part. In other
words, it is not possible to read yourself or process yourself as a process. The DIME
(distributed intelligent computing element) computing model [4, 5, 23] introduces three key
modifications to the Turing machine to enable both the process execution and its
management.

First, The {read -> compute -> write} instruction cycle of the Turing machine is modified to
{interact with external agent -> read -> compute -> interact with external agent -> write}
instruction cycle which allows the external agent to influence the further evolution of
computation while the computation is still in progress.

Second, the external agent consists of a set of parallel managers monitoring and controlling
the evolution of the computation based on the context, constraints and available computing
resources (CPU and memory utilization, network bandwidth, external storage capacity and
storage throughput). As discussed in [4,5,24,25], the context, constraints and control options
“are specified as a meta-model of the algorithm under computation. The context refers to
local resource utilization and the computational state of progress obtained through the
interaction with the Turing machine. Each DIME contains two parts; the service regulator
(SR) that specifies the algorithm context, constraints, connections, communication
abstractions and control commands which are used to monitor and control the algorithm
execution at run-time; and the algorithm executable module (SP) that can be loaded and run
in the DIME.

Third, in addition to read/write communication of the Turing machine, the managers
communicate with external agents using a parallel signaling channel. This allows the



Mikkilineni; AIR, Article no. AIR.2014.003

216

external agents to influence the computation in progress based on the context and
constraints just as a Turing Oracle is expected to do. The external agent itself could be
another DIME in which case, changes in one computing element could influence the
evolution of another computing element at run time without halting its Turing machine
executing the algorithm”. Fig. 2 shows the DIME computing model [5]. DIME can be
described as a managed Turing machine using a parallel management of the computing
resources based on the knowledge about the process being executed, its context,
constraints, communication, connections, and control abstractions. The fault management
channel provides a heartbeat for each DIME which is used by the DIME self-management
processes to implement auto-failover, auto-recovery and other repair processes based on
the context and constraints. The accounting, performance and security channels are used to
implement auto-scaling, auto-protection and other self-management processes.

Fig. 2. The Distributed Intelligent Managed Element (A Turing machine with modified
instruction cycle and a parallel signaling network overlay modeling after the

Turing O-machine

The configuration channel is used to implement DIME self-configuration and also cognitive
processes required to manage the process being loaded and executed by the Managed
Intelligent Computing Element (the Turing machine equivalent). The signaling channel
overlaying the data channel enables a group of DIMEs to be interconnected to form a
managed DIME computing network or just DIME network. The DIME network thus enables a
network of DIMEs by integrating computing and communication abstractions in a single
computing unit. It enables the creation of a network of MICEs executing a distributed
computation and a network of managers that provide regulation of the distributed computing
events. This allows the composition of hierarchical recursive (each node can itself be a sub-
network) managed process implementation. Fig. 3 shows a comparison between the Turing
instruction cycle and DIME instruction cycle.



Mikkilineni; AIR, Article no. AIR.2014.003

217

A workflow is implemented as a set of tasks, arranged or organized in a directed acyclic
graph (DAG) and executed by a managed network of DIMEs. These tasks, depending on the
computation process requirements are programmed and executed as loadable modules in
each DIME. The distributed software components along with associated profiles defining
their use and management constraints are executed by DIMEs. The profiles are used as
blueprints to setup, execute and control the down-stream DAG at each node based on global
and local policies that depend on system-wide priorities, process resource utilization
fluctuations and communication latency constraints.

In the next section we will discuss implementing cognitive processes using a DIME network.
We show how the DIME network architecture provides tools to model various abstractions
required not only in both Computationalism and Connectionism but also address other
aspects of cognition such as embedded, embodied, enacted and extended cognitive
processes.

Fig. 3. The instruction cycles in the Turing machine and the DIME computing model

4. INFUSING AUTONOMIC PROCESSES IN DISTRIBUTED COMPUTING: THE
DIME NETWORK ARCHITECTURE (DNA)

DIME is like a stem cell whose function can be defined along with its context, constraints,
communication, and control abstractions. The DIME at run time provides self-management
and supports evolution of computation while computation is still in progress. It is also shown
that the DIME computing model supports the four genetic transactions of replication, repair,
recombination and reconfiguration [12,2].

The DIME network architecture Fig. 4, discussed in detail by the author [25] elsewhere,
provides the following functions to implement cognitive processes using distributed
computing machines to implement an intent involving the reciprocal influence of "bottom-up"
and "top-down" processes:

1. Managing the “Life” of a Cognitive Process – Policy based resource assurance for
system-wide process execution: Each DIME provides self-monitoring of resources
and takes action based on local policies and an ability to load and execute a process
using local operating system at run-time. A DIME network provides self-
management of group-wide policies and system-wide policies also at run-time. This
allows the decoupling of cognitive process management from the underlying
infrastructure resources management using the replication, repair, recombination
and reconfiguration properties of the DIME network architecture.



Mikkilineni; AIR, Article no. AIR.2014.003

218

2. Instantiating a distributed process flow with scale-invariant composition and
management abstractions: Each DIME has a unique identity upon instantiation. A
regulator allows provisioning, provides heart-beat, security, performance and
account management for each process it executes. The self-identity extends to
network of DIME networks executing an intent.

3. A signaling scheme (addressing, alerting, mediation and supervision) to facilitate
interaction with other DIMEs. The signaling allows same regulation features as the
DIME for a group of DIMEs (sub-network and network level).

4. Supporting [3] embodied, embedded, enacted and extended process flows using a
DIME network with a system-wide awareness: The DIME network provides a natural
framework for implementing reliable managed cognitive processes that are
embodied (partly constituted by distributed and specialized structures and
processes). Individual processes at the leaf level may be embedded (designed to
function only in tandem with system’s environment). By interacting with the
environment through embedded processes, the DIME network supports cognitive
processes that are enacted. The distributed nature and interaction with environment
provides the execution of extended cognitive processes using the recursive
composition capability of the DIME network.

5. Dynamic process Management: The run-time monitoring of both resource utilization
and process execution along with signaling capabilities allows policy based
intervention in each DIME while computation is still in progress using its Turing O-
machine like behavior of each DIME.

Fig. 4. A distributed cognitive process using DIME network architecture [25]

We argue that the DIME network architecture provides modeling capabilities with high
degree of scaling, resilience and efficiency to represent various aspects of both
Computationalism and Connectionism. It provides the right functionality for individual DIMEs
by creating a managed DIME network with appropriate local, sub-network and network –
wide policies to ensure that the intent is executed. The ability to change the evolution of
computation in progress in any Turing machine using the new instruction cycle provides self-
management properties using the descriptions of process execution and its management.
The Turing O-machine like control circumvents the limitations on Turing machines imposed



Mikkilineni; AIR, Article no. AIR.2014.003

219

by Gödel’s theorems. The self-identity at the element level, sub-network level and network
level provides the expressive power of ownership [25] for the cognitive process with
appropriate resource monitoring and policy-based control of safety and survival while
executing the intent.

The signaling network overlay over the Turing machine network provides a self-managed
recursive distributed computing engine which is highly scalable, resilient and efficient to
address many of the problems amenable to Connectionism. Each DIME with many
connections to other DIMEs in a network provides some of the modeling capabilities of
neural networks. For example the connection strengths can determine their affinity. In
addition, the scale-invariant FCAPS management at the element, sub-network and the
network level allows the expressive power of supervision of distributed, embodied,
embedded, enacted, and extended cognitive processes [25].

Details of DIME network architecture implementation demonstrating two use cases, one in
cloud computing and another in a multi-core server are published else-where [24].  In one
implementation, a Linux process is converted into a DIME to demonstrate auto-scaling, self-
repair, load-balancing, live-migration and security management without a Hypervisor or
interfaces to infrastructure management systems at run-time. In another implementation a
core in a multi-core server is converted to a DIME using a new operating system to execute
a program. A network of DIMEs is used to demonstrate FCAPS management of a workflow.
More recently, Goyal [5, 26] have shown that the DIME network architecture is one of the
implementation architectures for π-calculus to implement mobility, synchronization and
concurrency.

Currently, the work is being extended to implement ontology based workflows using the
service regulator to define, execute and control tasks constituting the workflow [27].
Ontologies are computational formalizations of the knowledge about a given domain,
allowing computers to manage the information at a semantic level. In the semantic web
(which is a means to build a World-Wide Web where the semantic content is accessible for
computers, not just for the human users) ontologies are the mechanism for providing a
vocabulary that will describe data held in a common data model. The vocabulary and the
semantics provided by the ontology all facilitate machine processing. As Aranguren [28]
points out, the knowledge representations using ontologies are used for different functions,
such as web agents [29] and web services [30], GRID technology [31], e-commerce [32],
data mining and text mining [33,34] and computer security [35] among others.

In order to inject intelligence into machines, a cognitive process must cope with a set of
predefined rules along with complex decision making procedures, which calls for a solid
knowledge base in which entities are captured from the real-world but distilled into machine
readable models. The models must capture the descriptions of the entities, their behaviors
including the context, constraints and relationships between the entities, communications
and abstractions for their control. In this section we discuss how the DIME net-work
architecture describes the intent, the regulatory behavior and the execution behavior of a
cognitive process using their ontological descriptions.
The approach we take in our use of ontologies is to focus on the intent of the cognitive
process and its execution. Taking the cue from living organisms, we select two main
objectives driving the design:

1. First, imparting a sense of self with ownership of the intent to a cognitive process.



Mikkilineni; AIR, Article no. AIR.2014.003

220

2. The second is to describe both the execution of the temporal and hierarchical
process flows required to accomplish the intent but also their regulation using
management process flows.

The self-management consists of:

1. Fault management: A heartbeat is imparted to each DIME on instantiation that is
used for fault management.

2. Configuration management: The ability to execute commands to configure the
context, constraints, communication, connections and control abstractions specified
for each process loaded and executed in the DIME provides dynamic control of the
evolution of computational task contributing to the intent of the cognitive process

3. Account management: Each DIME’s contributions to the overall cognitive process
are ac-counted for with appropriate ownership and other attributes.

4. Performance management: The resource utilization is monitored to assure the task
at hand which is contributing to overall cognitive process based on global priorities,
workload variations and latency constraints. This provides a vehicle to allocate
appropriate resources to appropriate tasks in overall cognitive process execution.

5. Security management: The Turing oracle nature of DIME allows monitoring and
enforcing security in Turing Machine’s instruction cycle. This allows task security to
be monitored and matched with global cognitive process security (based on
ownership and identity).

The DIME computing model provides a very convenient container to model a self-managed
computing engine that executes a managed task. It allows the description that contains the
execution specification along with its intent showing the context, communication, constraints,
connections and control of the task being executed. The Turing oracle nature of the
computing element provides dynamic control of the computational flow during execution by
modifying the instruction cycle.

5. CONCLUSION

The DIME computing model inserts sensors and actuators into the Turing machine following
the clue from the Turing O-machine. It infuses the intent of the function in each computing
element using a meta-model of the intent with context, constraints, communications,
connections, and control and implementing them using a managed Turing machine with a
non-von Neumann parallel regulation. The FCAPS manager and the modified instruction
cycle of the Turing machine provide the best practices to manage life of computation (which
depends on the resources available) and safe-keeping [11]. The signaling overlay and
parallel distributed execution model with support for replication, repair, recombination and
reconfiguration provide additional expressive power to evolve changes in one process
element executing a function based on changes in other elements while computation is in
progress. The recursive composition and scale invariant management structure processes
provide the ability to implement embodied, embedded, enacted and extended cognitive
processes with intent and ownership to assure successful execution with optimal resource
management. Both these capabilities are possible to be implemented today because of the
new computing power and high bandwidth made possible by multi-core chip design and high
bandwidth networks.

It is important to note that the DIME network architecture is agnostic to operating systems or
underlying hardware and a DIME is a virtual managed service execution container we call



Mikkilineni; AIR, Article no. AIR.2014.003

221

Cognitive Container that can be implemented in computers in different forms as is described
in [4]. High degree of scaling spanning across multiple devices and geographies and the
ontology based approach to define and execute managed temporal and hierarchical
sequences of events are suited to model both computational and connection models of
reasoning using the recursive network composition scheme to design and deploy DIME
networks on distributed servers. The signaling network overlay allows run-time end-to-end
service visibility and control while the Turing O-machine like behavior allows distributed
service transaction management independent of the infrastructure management systems.
Thus the DIME network architecture provides the architectural resiliency of cellular
organisms by providing safety and survival of the service and its components through
replication, repair, recombination and reconfiguration of the cognitive containers and
providing history of the service transaction for sectionalizing, isolating, diagnosing and fixing
the problems in the distributed infrastructure at leisure.

While proofs of concept have been implemented to demonstrate feasibility [4,24], we
understand that this is a bold new approach that goes against current assertions in computer
science [36]. Thus the DIME network architecture is in its infancy and requires both
theoreticians and implementers to validate or disprove these assertions before it can be
useful in mission critical environments. As pointed out in [5], our prototypes demonstrate that
the DIME network architecture enables the self-management of a response to the ephemeral
nature of distributed computing caused by the non-deterministic impact of environmental
interaction with the system. It has the potential to replace current ad-hoc approaches to
distributed cognitive computing systems. Most recently, the DIME network architecture has
been used to demonstrate a distributed web services delivery using a Linux, Apache,
MySQL, PHP suite [37] deployed in a distributed computing environment consisting of
physical and virtual servers shown in Fig. 5. The policy based end-to-end service
management allows self-repair, auto-scaling, live-migration and end-to-end transaction
security using the mobility of the containers executing the applications. The authors discuss
container mobility across physical servers and virtual servers distributed in different
datacenter and cloud infrastructure using the end to end service visibility and control using
the DIME network architecture.

Fig. 5. A DIME Network deploying multiple replicated and load-balanced services
withauto-scaling, self-repair, Live Migration with multi-casting of file/device writes

with transaction consistency and end-to-end service transaction security assurance
at run-time



Mikkilineni; AIR, Article no. AIR.2014.003

222

Author was made aware of certain similarity to other work by Simeonov [38,39] which also
point out the usefulness of the knowledge of a node in the network about its neighbors and
environment in serving the overall intent of the networked community of nodes. DIME
computing model uses the intent to define the function, structure and relationships to deliver
the intent of the overall system.

COMPETING INTERESTS

Author has declared that no competing interests exist.

REFERENCES

1. McLaughlin B. Computationalism, Connectionism, and the philosophy of mind. In:
Floridi L, (Ed.). The Blackwell guide to philosophy of computing and information.
Malden: Blackwell; 2004.

2. Wells A. Rethinking Cognitive computation: Turing and the science of mind. Palgrave
Macmillan: London; 2006.

3. Rowlands M. The new science of the mind. The MIT Press: Cambridge; 2010.
4. Mikkilineni R. Designing a new class of distributed systems. Springer: New York;

2011. ISBN: 1461419239.
5. Mikkilineni R, Comparini A, Morana G. The Turing O-machine and the DIME network

architecture: Injecting the architectural resiliency into distributed computing. In Turing-
100. The Alan Turing Centenary, (Ed.) Andrei Voronkov, Easy Chair Proceedings in
Computing; 2012;10.
Available: http://www.easychair.org/publications/?page=877986046

6. Barrett L. Beyond the brain. Princeton University Press: Princeton; 2011.
7. Cockshott P, MacKenzie LM, Michaelson G. Computation and its limits. Oxford

University Press, Oxford; 2012.
8. Carroll SB. The new science of EvoDevo - Endless Forms Most Beautiful. W. W.

Norton & Co: New York; 2005.
9. Damasio A. The feeling of what happens: Body and emotion in the making of

consciousness. New York, NY: Harcourt & Company; 1999.
10. Seung S. Connectome: How the brain makes us who we are. Houghton Mifflin

Harcourt: Boston; 2012.
11. Damasio A. Self comes to mind: Constructing the conscious brain. New York:

Pantheon Books; 2010.
12. Stanier P, Moore G. Embryos, Genes and Birth De-fects, (2nd Edition), Edited by

Patrizia Ferretti, Andrew Copp, Cheryll Tickle, and Gudrun Moore, London, John Wiley
& Sons. 2006;5.

13. Huebscher MC, McCann JA. A survey of autonomic computing—degrees, models,
and applications. ACM Computing Surveys. 2008;40(3):7.

14. Denko MK, Yang LT, Zhang Y. Autonomic computing and networking. New York, NY,
Springer; 2009.

15. Braubach L, Pokahr A. Addressing challenges of distributed systems using active
components. In Intelligent Distributed Computing V, New York, NY: Springer; 2011.

16. Bruneton E, Coupaye T, Leclercq M, Quéma V. The FRACTAL component model and
its support in Java.  Softw Pract Exper. 2006;36:1257-1284.

17. Turing AM. Edited by Copeland JB. The essential Turing: Seminal Writings in
Computing, Logic, Philosophy, Artificial Intelligence and Artificial Life: Plus the Secrets
of Enigma”, New York: The Oxford University Press; 2004.



Mikkilineni; AIR, Article no. AIR.2014.003

223

18. Waldrop, Mitchell M. Complexity: The emerging science at the edge of order and
chaos. Penguin Books, London; 1992;218.

19. Dawkins R. The selfish gene, Oxford University Press, Oxford; 1989.
20. Von Neumann J. Papers of John von Neumann on computing and computing theory.

Hixon Symposium, September 20, 1948, Pasadena, CA, The MIT Press,
Massachusetts. 1987;474.

21. Samad T, Cofer T. Autonomy and automation: Trends, technologies, In Gani R,
Jørgensen SB, (Ed.). Tools in European symposium on computer aided process
engineering Amsterdam. Netherlands: Elsevier Science BV. 2001;11.

22. Gödel K. Monatsheftefür Mathematic und Physik Leipzig. 1931;38:173-198.
23. Mikkilineni R, Morana G, Zito D, Di Sano M. Service virtualization using a non-von

neumann parallel, distributed and scalable computing model. Journal of Computer
Networks and Communications; 2012.

24. Mikkilineni R, Morana G, Seyler I. Implementing distributed, self-managing computing
services infrastructure using a scalable, parallel and network-centric computing model.
In Villari M, Brandic CI, Tusa F. Achieving Federated and Self-Manageable Cloud
Infrastructures: Theory and Practice IGI Global. 2012;57-78.

25. Mikkilineni R. Going beyond computation and Its limits: Injecting cognition into
computing. Applied Mathematics. 2012;3(11):1826-1835. doi:
10.4236/am.2012.331248.

26. Goyal P, Mikkilineni R. Implementing managed loosely-coupled distributed business
processes: A new approach using dime networks. Enabling Technologies:
Infrastructure for Collaborative Enterprises (WETICE), 21st IEEE International
Conference, Toulouse. 2012;25-27.

27. Wang L, Mikkilineni R. Private Communication; 2013.
28. Aranguren ME. Ontology design patterns for the formalisation of biological ontologies.

M. Phil Thesis, University of Manchester; 2005.
29. Hendler J. Agents and the semantic web. IEEE Intelligent Systems Journal.

2001;16:30–37.
30. Gibbins N, Harris S, Shadbolt N. Agent-based semantic web services. Journal of Web

Semantics. 2004;1(1):141–154.
31. Stevens RD, Robinson AJ, Goble CA. MyGrid: personalised bioinformatics on the

information grid. Bioinformatics. 2003;19:302–304.
32. Kwon OB, I know what you need to buy: context-aware multimedia-based

recommendation system. Expert Systems with Applications. 2003;25:387–400.
33. Li Y, Zhong N. Web mining model and its applications for information gathering.

Knowledge-Based Systems; 2004.
34. Kim JD, Ohta T, Tateisi Y, Tsujii J. GENIA corpus - a semantically annotated corpus

for bio-textmining. Bioinformatics. 2003;19:180–182.
35. Lin SC, Tseng SS. Constructing detection knowledge for DDoS intrusion tolerance.

Expert Systems with applications. 2004;27:379–390.
36. Eberbach E, Mikkilineni R, Morana G. Computing models for distributed autonomic

clouds and grids in the context of the DIME Network Architecture, Proc. of 21st IEEE
Intern. Conf. on Collaboration Technologies and Infrastructures WETICE Track on
Convergence of Distributed Clouds. Grids and Their Management, Toulous, France.
2012;25-27.

37. Morana G, Mikkilineni R. An implementation of end-to-end service visibility and control
using DIME network architecture to provide self-repair, auto-scaling, live migration and
transaction security across distributed computing infrastructures. Submitted to
WETICE, Parma, Italy; 2014.



Mikkilineni; AIR, Article no. AIR.2014.003

224

38. Simeonov PL. The wandering logic intelligence, a hyperactive approach to network
evolution and its application to adaptive mobile multimedia communications. Ph.D.
Thesis; 2002.

39. Ehresmann AC, Simeonov PL. WLIMES: Towards a theoretical framework for
wandering logic intelligence memory evolutive systems. In: Integral Biomathics:
Tracing the Road to Reality, Simeonov PL, Smith LS, Ehresmann AC, (Eds.).
Springer-Verlag; 2012.

_________________________________________________________________________
© 2014 Mikkilineni; This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:

http://www.sciencedomain.org/review-history.php?iid=450&id=31&aid=3973


