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Abstract: A total of 99 endophytic fungal isolates were obtained from the roots of Glycyrrhiza
inflata, which was a traditional medicinal plant mainly distributed in Xinjiang, China. Twenty-two
distinct isolates were selected for further taxonomical identification by morphological traits and
internal transcribed spacer (ITS) rRNA gene sequence analysis. Eleven genera were identified,
among which Aspergillus, Alternaria and Fusarium were dominant. The crude extracts of 22 distinct
identified fungi were successively evaluated for their antifungal activities on three rice fungal
pathogens using the method of hyphal radial growth rate. Among them, the crude extract of
Alternaria an-gustiovoidea Glinf007 showed the significantly mycelial growth inhibitory activity. The
results demonstrated that G. inflata contained a diversity of culturable endophytic fungi, which
could produce natural antimicrobial compounds that might be of great value to the agriculture and
pharmaceutical industries.

Keywords: medicinal plant; Chinese licorice; antimicrobial compounds; antifungal activity; rice
fungal pathogens

1. Introduction

Endophytic fungi are microorganisms that live in plant tissues during part or all
of their life history without causing obvious disease symptoms. They are widespread
in nature and have been isolated from many herbs and woody plants [1,2]. During the
internal growth of plant tissues, endophytic fungi establish a variety of relationships with
their host plants, such as symbiosis, mutual benefit or parasitism. The colonization of
endophytic fungi in host plants can help hosts adapt to biotic and abiotic stresses, which
were usually associated with the secondary metabolite biosynthesis in endophytic fungi
to provide protection and survival value for the hosts [3–6]. It has been reported that the
metabolites produced by certain endophytic fungi were the same or similar as the metabo-
lites produced by their host plants [7]. The genetic recombination between the host and the
endophytic fungus during the evolutionary process was believed to be the cause of this
phenomenon [8,9]. The endophytic fungi from medicinal plants have been paid attention
to for their ability to produce various bioactive secondary metabolites [10–17]. Licorice is
the general name for the genus Glycyrrhiza (Leguminosae) that includes 30 species in the
world. It is one of the most important medicinal herbs used in traditional Chinese medicine.
Licorice was used to treat gastric or duodenal ulcers, bronchitis, cough, arthritis, adrenal
insufficiency and allergies. The active substances from licorice may be associated with
specific microbes such as the endophytic fungi. Only the following three Glycyrrhiza species:
G. uralensis, G. inflata, and G. glabra are officially recognized and used as traditional Chinese
medicinal plants according to the Chinese Pharmacopoeia [18]. A variety of bioactive
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compounds including triterpenoids [19], flavonoids [20] and polysaccharides [21] have
been isolated and identified from licorice plants [18].

The endophytic fungi and their secondary metabolites of G. glabra have been studied
previously [22,23]. However, the endophytic fungi of G. infalta and G. uralensis have rarely
been reported [24]. In this study, we studied the diversity of endophytic fungi of G. inflata
after strict surface disinfection, and evaluated the antifungal activity of the extracts from
22 representative endophytic fungi. The purpose of this work was to study the diversity of
the culturable endophytic fungi of G. inflata, as well as to reveal the antifungal activities of
the isolated fungi in order to provide endophytic fungal candidates for the development of
antifungal compounds such as agrochemicals and pharmaceuticals [25].

2. Materials and Methods
2.1. Plant Materials

The eight-year-old healthy plants of Glycyrrhiza inflata were collected in Xinjiang
(86◦34′27′′ E, 42◦03′32′′ N), Northwest China, on 2 October 2020. All samples were placed
in an ice box and immediately transported to the laboratory for further study. The plants
were authenticated by Prof. Jizhao Zhang at Xinjiang Institute of Chinese Materia Medica
and Ethnical Materia. A voucher specimen was deposited in the Department of Plant
Pathology, China Agricultural University.

2.2. Separation and Purification of G. inflata Endophytic Fungi

A total of nine healthy roots from three G. inflata plants (three plants were randomly
sampled, and three roots were randomly collected from each plant) were rinsed thoroughly
with tap water to remove soil residue and dust, and then washed twice with deionized
water. The clean root samples were sterilized with 70% ethanol for 2 min and immersed
successively in 1% sodium hypochlorite for 20 min, then rinsed in sterile distilled water
three times. Finally, the root samples were dried on sterile absorbent paper. The surface-
dried root explants were cut into small pieces of 0.5 cm × 0.5 cm with a scalpel, and
2–3 pieces were placed on each potato dextrose agar (PDA) plate containing 500 µg/mL of
streptomycin sulfate. Inoculated plates were incubated at 25 ◦C for 7–14 days, in the dark,
until mycelial growth from the root tips were apparent. The pure cultures were isolated by
hyphal tip isolation on PDA plates until the colony morphology was stable and consistent.
The obtained single colony was either stored at 4 ◦C or kept in 20–30% glycerol/water at
−80 ◦C for preservation.

2.3. Taxonomic Identification of Endophytic Fungi

The growth of each fungal strain was observed and recorded, including morphological
characteristics such as colony shape, color and size. During the mature period of colony
growth, the microscopic characteristics such as hyphal thickness, branching, separation
and spore morphology were observed using an IX71 inverted microscope (Olympus,
Tokyo, Japan) [10,26,27].

Genomic DNA was extracted using the CTAB method [28]. About 500 mg of fresh
mycelia was scraped with a toothpick, and was put in a 2-milliliter Eppendorf (EP) tube
with a few magnetic beads, and shaken on the breaker for 60 s; then, 700 µL of 2% CTAB
extract was added, mixed well, and incubated at 65 ◦C for 30 min. The sample was
removed, cooled to room temperature, and 600 µL was transferred to a 1.5-milliliter EP
tube. An equal volume of 600 µL of phenol:chloroform:isoamyl alcohol (25:24:1, v/v)
was added, mixed well, and centrifuged at 16,099 cf. for 15 min. Next, 450 µL of the
supernatant was aspirated, 2 volumes of 900 µL of anhydrous ethanol was added, and
DNA was precipitated at −20 ◦C for 30 min. After 30 min, each EP tube was centrifuged
at 16,099 cf. for 15 min, the supernatant was discarded, and the pellet was washed twice
with 70% ethanol. Finally, the pellet was washed once with anhydrous ethanol, dried, and
dissolved in 30 µL of ddH2O.
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Both internal transcribed spacer (ITS) primers ITS1 (5′-TCCGTAGGTGAACCTGCGG-
3′) and ITS4 (5′-TCCTCCGCTTATTGATATGC-3′) were used to amplify the ITS rRNA gene
sequences of endophytic fungi [10,11,14]. Polymerase chain reaction (PCR) was as follows.
The reaction mixture contained 1 µL of 5 µmol/L forward primer, 1 µL of 5 µmol/L reverse
primer, 25 µL of high-fidelity DNA polymerase, and 1 µL of template DNA, and 22 µL of
ddH2O. The thermal cycling conditions were pre-denaturation at 95 ◦C for 4 min, then
denaturation at 95 ◦C for 15 s, annealing at 55 ◦C for 15 s, and extension at 72 ◦C for 20 s,
with a total of 35 cycles. At the end of the cycle, the reaction mixture was held at 72 ◦C for
10 min and then cooled to 16 ◦C. Gel electrophoresis (1%) was used to detect PCR products,
and the results were analyzed by Tsingke Biotech: Tiangen Biotech Co., Ltd. (Beijing,
China). Each ITS sequence was subjected to BLAST search against the GenBank database,
and the strain with the highest similarity was found and downloaded. The phylogenetic
tree was constructed using the Clustal 2.0 program and the Neighbor-Joining method.
Phylogeny analysis was computed by MEGA 5.0.

2.4. Preparation of the Crude Extraction of Endophytic Fungi

Each fungal strain was inoculated on solid rice medium in 100-milliliter Fernbach
flasks at 28 ◦C for 15–30 days (for each flask, 11 mL of distilled water was added to 10 g of
rice and incubated overnight before autoclaving). The medium and mycelia were poured
out, and secondary metabolites were extracted with ethyl acetate (EtOAc). The solvent was
evaporated in vacuo to obtain the final crude EtOAc extract. This assay was repeated three
times per fungal strain.

2.5. Antifungal Activity Determination

The antifungal activity of the EtOAc extracts of endophytic fungi was assessed on
the basis of hyphal radial growth rate of filamentous fungi [29]. Three rice pathogenic
fungi, including Villosicalva virens strains P1 and LN02, Magnaporthe oryzae and Rhizoctonia
solani were used as the test fungi. Each endophytic fungal EtOAc extract was dissolved
in 7% DMSO to prepare a solution with the concentration of 10 mg/mL, and then an
appropriate amount was added into the potato dextrose agar (PDA) medium to make
the final concentration of 100 µg/mL, the diameter of the Petri dish was 60 mm. The
assay was performed by placing a 5-millimeter diameter plug of growing mycelia onto
the center of a Petri dish containing EtOAc extract in medium. Carbendazim (100 µg/mL)
and DMSO (0.7 µL/mL) were used as the positive control and negative (solvent) control,
respectively. The pathogen hyphae of each negative control grew to 80% of the Petri dish
diameter to be calculated for the growth diameter of hyphae, and the diameter of each
colony was measured by two measurements at right angles. The following formula was
used to calculate the fungal growth inhibition rate:

Mycelial growth inhibition rate (%) = [1 − (D − 5)/(Dck − 5)] × 100

where D represents the average colony diameter (in mm) of the test strain, Dck represents
the average colony diameter (in mm) of the solvent control, and 5 represents the diameter
of the original hypha agar plate (in mm).

2.6. Data Analysis

All experimental data were obtained by using Excel 2016 software to perform statistical
analysis and expressed as mean ± SD from three separate observations. The data were
submitted to an analysis of variance (one-way ANOVA) to detect significant differences
by PROC ANOVA in SAS version 8.2. The term significant has been used to denote the
differences for which p ≤ 0.05.
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3. Results and Discussion
3.1. Identification of the Endophytic Fungi in G. inflata Roots

A total of 99 endophytic fungal isolates were separated from the tissues of nine roots
of three G. inflata plants. According to their morphological characters (i.e., the shape
of conidia, type of conidiophores, mycelial growth rate, colony color and texture, etc.),
22 representative fungal isolates were selected for further macro and microscopic iden-
tification. They were identified as 11 genera including Aspergillus (Glinf001, Glinf002,
and Glinf003), Alternaria (Glinf004, Glinf005, Glinf006, Glinf007, and Glinf008), Fusarium
(Glinf009, Glinf010, Glinf011, Glinf012, and Glinf013), Penicillium (Glinf014 and Glinf15),
Acrocalymma (Glinf016), Athelia (Glinf017), Acremonium (Glinf018), Botryotrichum (Glinf019),
Earliella (Glinf020), Rosellinia (Glinf021), and Trichothecium (Glinf022) (Table 1). Among
them, the Fusarium species had the most isolation, with a colonization frequency (CF) of
39%, followed by the species of Aspergillus, Alternaria, Penicillium, and Earliella with CF
values of 21, 19, 5, and 5%, respectively, and the remaining isolation with CF was in the
range of 1–3%. The species of dominant genera such as Fusarium, Aspergillus, and Alternaria
were almost equally isolated from all the roots detected.

Table 1. The endophytic fungi isolated from G. inflata roots.

Fungal
Isolate

CF
(%)

GenBank
Accession
Number

Closest Related Species
(Accession Number)

Identity
(%)

Macro- and Microscopic
Identification

Glinf001 17 MW563907 Aspergillus ustus
(AY373874.1) 99 Aspergillus ustus

Glinf002 3 MW563908 Aspergillus keveii
(MN542353.1) 100 Aspergillus keveii

Glinf003 1 MW563909 Aspergillus germanicus
(MN650837.1) 100 Aspergillus germanicus

Glinf004 15 MW563910 Alternaria alternata
(MN615420.1) 100 Alternaria alternata

Glinf005 1 MW563911 Alternaria sp.
(MW220839.1) 99 Alternaria sp.

Glinf006 1 MW563912 Alternaria tenuissima
(MK616250.1) 100 Alternaria tenuissima

Glinf007 1 MW563913 Alternaria angustiovoidea
(MK910070.1) 99 Alternaria angustiovoidea

Glinf008 1 MW563914 Alternaria brassicae
(JF439450.1) 99 Alternaria brassicae

Glinf009 29 MW563915 Fusarium proliferatum
(MT560212.1) 100 Fusarium proliferatum

Glinf010 3 MW563916 Fusarium annulatum
(MT434005.1) 100 Fusarium annulatum

Glinf011 3 MW563917 Fusarium fujikuroi
(MT603302.1) 100 Fusarium fujikuroi

Glinf012 2 MW563918 Fusarium solani
(MN013858.1) 100 Fusarium solani

Glinf013 2 MW563919 Fusarium sp.
(MT252004.1) 99 Fusarium sp.

Glinf014 3 MW563920 Penicillium sizovae
(MN858522.1) 99 Penicillium sizovae

Glinf015 2 MW563921 Penicillium bilaiae
(LN901118.1) 99 Penicillium bilaiae

Glinf016 1 MW563922 Acrocalymma sp.
(KP170636) 98 Acrocalymma sp.

Glinf017 1 MW563923 Athelia bombacina
(MH201277.1) 99 Athelia bombacina

Glinf018 2 MW563924 Acremonium sclerotigenum
(MF077221.1) 99 Acremonium sclerotigenum
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Table 1. Cont.

Fungal
Isolate

CF
(%)

GenBank
Accession
Number

Closest Related Species
(Accession Number)

Identity
(%)

Macro- and Microscopic
Identification

Glinf019 2 MW563925 Botryotrichum murorum
(MG228407.1) 100 Botryotrichum murorum

Glinf020 5 MW563926 Earliella scabrosa
(MF077243.1) 99 Earliella scabrosa

Glinf021 3 MW563927 Rosellinia sp.
(KU375680.1) 100 Rosellinia sp.

Glinf022 2 MW563928 Trichothecium roseum
(MN372207.1) 99 Trichothecium roseum

The ITS1-5.8S-ITS2 partial sequences (Figure S2) of 22 distinct isolates were submitted
to the GenBank (accession numbers: MW563907–MW563928), and the closest related
species from BLASTn analysis was reported in Table 1. The expect values (E values) of
22 fungal species were all less than 10−5, indicating that the sequence alignment was
highly reliable. Except for Glinf016 (identity, 98%), the other isolated endophytic fungi had
homology greater than or equal to 99% to their closest related species. Twenty-two isolates
were identified on the basis of morphological traits and ITS rRNA gene sequence analysis.
The molecular identification results of the endophytic fungi were in agreement with the
observed morphological characters. For example, isolate Glinf009 had a purple colony
with aerial mycelia. Macroconidia were from falcate to straight, usually 3–5 septates with
tips at two ends. It was tentatively identified as Fusarium sp. [27]. The closest sequence
similarity of isolate Glinf009 was 100% to the fungus Fusarium proliferatum (MT560212.1) in
GenBank (Table 1). In agreement with the morphology-based diagnosis, isolate Glinf009
was clustered in the clade containing Fusarium proliferatum (MT560212.1) with 99% NJ
bootstrap support (Figure 1). On the basis of the ITS sequences and morphological traits,
isolate Glinf009 was considered as the member of the genus Fusarium, and identified as
Fusarium proliferatum [26,27]. In the future, a multi-gene phylogenetic analysis should
be completed to confirm species level identification for all the isolates within the genera
Fusarium, Penicillium, and Aspergillus in addition to morphological characteristics [30].
Except for the isolate Glinf016, the ITS sequence identity of the other 21 fungi reached more
than 99%.

The phylogenetic analysis of the ITS-rDNA region was completed using our isolates
and ITS sequences available in GenBank. The GenBank sequences were selected and based
on the previous BLASTn results (Figure 1). The phylogenic relationship demonstrated
that the isolates could be sorted into six groups (clades). The first group was composed
of isolates Glinf009–Glinf013, Glinf018, Glinf020, and Glinf022, which all belonged to the
Order Hypocreales. The second group was composed of isolate Glinf019, which belonged to
the Order Sordariales. The third group was composed of isolate Glinf021, which belonged
to the Order Xylariales. The fourth group was composed of isolates Glinf001–Glinf003,
Glinf014 and Glinf015, which all belonged to the Order Eurotiales. The fifth group was
composed of isolates Glinf004–Glinf008 and Glinf016, which all belonged to the Order
Pleosporales. The sixth group was composed of isolate Glinf017, which belonged to the
Order Atheliales. All the members of the Ascomycota produce an ascus that contains
ascospores, and the members of Basidiomycota comprise fungi bearing the spores on a
basidium. All the isolates belonged to the phylum Ascomycota with the exception of the
isolate Glinf017, which belonged to the phylum Basidiomycota.
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Figure 1. ITS rDNA phylogenetic relationship analyses of the fungal isolates from G. inflata. The
numbers at the branches indicated the percentages of trees from 1000 bootstrap replication. The
unrooted tree was generated using Clustal × 2.0 program using the Neighbor-Joining method.
Phylogeny test was computed by MEGA 5.0. Additional taxa represent top BLASTn hits from the
NCBI GenBank database.
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3.2. Inhibitory Activity of Endophytic Fungal Extracts on Mycelial Growth

The mycelial growth inhibition rates of the ethyl acetate (EtOAc) extracts at their
concentration of 100 µg/mL in medium from 22 endophytic fungal strains were determined
with mycelial growth inhibitions on rice sheath blight pathogen Rhizoctonia solani shown in
Figure 2, on rice blast pathogen Magnaporthe oryzae shown in Figure 3, and on rice false
smut pathogen Ustilaginoidea virens P1 and LN02 shown in Figures 4 and 5, respectively.
The reports of the statistical analysis using the one-way ANOVA method were shown in
Tables S1–S4.
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differences (p ≤ 0.05).
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error bars represent standard deviations from three independent samples. Different letters indicate statistically significant
differences (p ≤ 0.05).
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Figure 4. Mycelial growth inhibition of the ethyl acetate extracts from 22 endophytic fungal strains on U. virens P1. The
error bars represent standard deviations from three independent samples. Different letters indicate statistically significant
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Figure 5. Mycelial growth inhibition of the ethyl acetate extracts from 22 endophytic fungal strains on U. virens LN02. The
error bars represent standard deviations from three independent samples. Different letters indicate statistically significant
differences (p ≤ 0.05).

As shown in Figure 2, among all the test extracts, the crude EtOAc extract of
Aspergillus keveii Glinf002 showed its strongest mycelial growth inhibition on R. solani with
its inhibitory rate as 80.76%, which was equivalent to the positive control (carbendazim).
In addition, the EtOAc extracts of Alternaria angustiovoidea Glinf007, Fusarium proliferatum
Glinf009, and Botryotrichum murorum Glinf019 also showed significant mycelial growth
inhibition on R. solani with their inhibitory rates as 69.30, 58.58, and 46.39%, respectively.
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As shown in Figure 3, all the crude EtOAc extracts from endophytic fungi had weak
inhibitions on M. oryzae mycelial growth. Only the crude EtOAc extract of Trichothecium
roseum Glinf022 exhibited its relatively strongest inhibition on M. oryzae mycelial growth
with its inhibitory rate as 29.78%.

Most of the crude extracts from endophytic fungi showed moderate inhibitions on
U. virens P1 (Figure 4). Among them, the extract of Alternaria angustiovoidea Glinf007
had its relatively strongest inhibitory rate (50.82%) on U. virens P1. For the second
U. virens strain LN02, most of the crude extracts showed significant inhibitions (Figure 5).
Among them, the EtOAc extracts of Alternaria angustiovoidea Glinf007 and Fusarium fujikuroi
Glinf011 exhibited the strongest inhibitions with their inhibitory rates as 71.10 and 71.49%,
respectively.

This study described the culturable endophytic fungi from the roots of G. inflata.
However, most endophytic fungi are currently considered unculturable [31], and further
culture-independent techniques, such as the metagenomic library-based technique [32],
should be completed to elucidate the unculturable fungi in G. inflata. Previous studies
showed that endophytic microorganisms varied according to the location, age, and col-
lection time of the host plants as well as the cultivation methods [33,34]. More detailed
investigations should be necessary to increase the diversity of G. inflata materials (i.e., plant
materials with different collection places and collection seasons, plant parts, and plant
ages) as well as the cultivation media used. In addition, the fungal diversity of the soils
around the roots as well as the fungi from the root surface are also worth further study. In
this work, we only screened the ability of the endophytic fungal crude extracts for their
potential to limit the growth of three rice fungal pathogens, other biological activities,
such as cytotoxic, insecticidal, and antioxidant activities of the endophytic fungi from
G. inflata, also should be studied in detail. A thin-layer chromatography (TLC) bioautogra-
phy assay, which was considered as a valid method to qualitatively evaluate antimicrobial
components, should be used to identify antimicrobial compounds in the crude extracts of
fungi [35,36]. Furthermore, the bioactivity-guided discovery of antimicrobial compounds
from endophytic fungi is also an effective strategy [37].

4. Conclusions

In this study, we reported the culturable endophytic fungi from the roots of the tradi-
tional medicinal plant G. inflata as well as the antifungal activities of ethyl acetate extracts
from the distinct fungal isolates. A total of 99 endophytic fungal isolates were obtained.
Eleven genera were identified among which Aspergillus, Alternaria, and Fusarium were
dominant endophytes. Twenty-two representative isolates were selected and identified
using both morphological and molecular methods. The crude extracts of Aspergillus keveii
Glinf002, Alternaria angustiovoidea Glinf007, and Fusarium proliferatum Glinf009 showed
obvious inhibitory activities against rice sheath blight pathogen R. solani, and the extracts
of Alternaria angustiovoidea Glinf007 and Fusarium fujikuroi Glinf011 showed obvious in-
hibitory activities on rice false smut pathogen U. virens LN02. The results indicated that
these endophytic fungi have great potential as producers of natural antimicrobial com-
pounds. The following study will focus on the isolation of the antimicrobial compounds
from these fungi as well as on their applications as biocontrol agents.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/microbiolres12040060/s1, Figure S1: The aerial parts (a), and roots (b) of Glycyrrhiza inflata
collected in Xinjiang (86◦34′27′′ E, 42◦03′32′′ N), Northwest China, in 2 October 2020, Figure S2: The
ITS1-5.8S-ITS2 partial sequences of 22 fungal isolates (i.e., Glinf001–Glinf022), Figure S3: Mycelial
growth inhibition of the ethyl acetate extracts from 22 endophytic fungal strains on Rhizoctonia
solani, Figure S4: Mycelial growth inhibition of the ethyl acetate extracts from 22 endophytic fungal
strains on Magnaporthe oryzae, Figure S5: Mycelial growth inhibition of the ethyl acetate extracts
from 22 endophytic fungal strains on Ustilaginoidea virens strain P1, Figure S6: Mycelial growth
inhibition of the ethyl acetate extracts from 22 endophytic fungal strains on Ustilaginoidea virens strain
LN02, Table S1: One-way ANOVA method was employed for statistical analysis of the inhibitions of

https://www.mdpi.com/article/10.3390/microbiolres12040060/s1
https://www.mdpi.com/article/10.3390/microbiolres12040060/s1
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23 treatments on the pathogen Rhizoctonia solani. Nos. 1–22 were EtOAc extracts of endophytes and
No. 23 was the positive control carbendazim, Table S2: One-way ANOVA method was employed
for statistical analysis of the inhibitions of 23 treatments on the pathogen Magnaporthe oryzae. Nos.
1–22 were EtOAc extracts of endophytes and No. 23 was the positive control carbendazim, Table S3:
One-way ANOVA method was employed for statistical analysis of the inhibitions of 23 treatments
on the pathogen Villosicalva virens P1. Nos. 1–22 were EtOAc extracts of endophytes and No. 23 was
the positive control carbendazim, Table S4: One-way ANOVA method was employed for statistical
analysis of the inhibitions of 23 treatments on the pathogen Villosicalva virens LN-02. Nos. 1–22 were
EtOAc extracts of endophytes and No. 23 was the positive control carbendazim.
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