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Sénégal, Sénégal.
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Abstract

We consider the generalized divergence measure approach to compare different simulation
strategies such as the Independent Sampler (IS), the Random Walk of Metropolis Hastings
(RWMH), the Gibbs Sampler(GS), the Adaptive Metropolis (AM), and Metropolis within Gibbs
(MWG). From a selected set of simulation algorithm candidates, the statistical analysis allows us to
choose the best strategy in the sense of rate of convergence. We use the informational criteria such
as the Rényi divergence measure Rα(p, q), the Tsallis divergence Tα(p, q), and the α-divergence
Dα(p, q), where p and q are probability density functions, to show in some examples of synthetic
models with target distributions in one dimensional, and two dimensional cases, the consistency
and applicability of these α-divergence measures for stochastic simulation selection.

Keywords: MCMC methods, Metropolis-Hastings algorithm, Gibbs Sampler, Adaptive Metropolis,

Corresponding author: E-mail: papa.ngom@ucad.edu.sn

www.sciencedomain.org


British Journal of Mathematics and Computer Science 4(24), 3387-3402, 2014

Metropolis Within Gibbs, simulation strategy, target density, proposal density, α-divergence measure.

2010 Mathematics Subject Classification: 60J60, 62F03, 62F05, 94A17

1 Introduction
The stochastic simulation methods (MCMC, recent hybrid, and adaptive methods) have many

simulation algorithms with different convergence speeds. These convergence rates are unknown in
practice. Recall that the MCMC methods are used to simulate a probability distribution Π having a
density function f . These methods, consist to generate a Markov chain whose Π is the invariant
measure. For generating a Markov chain one needs a proposal distribution Φ having a density
function q. Consider, for example, the RWMH strategy of the Metropolis - Hastings sampler for
seeing how are used the densities f , q and the probability distribution Φ in this method. As any
iterative algorithm, this algorithm (RWMH) has an initial distribution density function denoted p0, which
generates X0 the first element of the Markov chain. This Markov chain (Xn)n≥0 is then then built
by iteration. Suppose that for n ≥ 0, Xn = xn is already simulated, then we want to get Xn+1. We
generate random independent variables Yn and Un such as

• Yn ∼ Φ(xn, .), distribution having as parameter the current state Xn = xn. If Φ(xn, .) is the
normal distribution we will have Φ(xn, .) = N (xn, σ

2) ie xn is the mean of normal distribution.

• Un ∼ U([0, 1]) ie Un has the uniform law on [0, 1].

• Note by α(x, y) = min(1, f(y)q(y,x)
f(x)q(x,y)

) with the convention α(x, y) = 1 if f(x)q(x, y) = 0.

• If Un ≤ α(Xn, Yn) then, Xn+1 = Yn i.e. we accept the transition.

• If Un > α(Xn, Yn) then, Xn+1 = Xn i.e. we reject the transition.

The study concerning the comparison of stochastic simulation strategies is introduced by Chauveau[1],
Chauveau and Vandekerkhove [2]. These authors have used the Kullback-Leibler divergence measure
to compare simulation strategies. The study made by these authors is based on two strategies of
Metropolis - Hastings sampler the Independent Sampler (IS) and the Random Walk of Metropolis
Hastings (RWMH). Then the convergence Theorem of the Kullback divergence estimator required
the Lipschitz condition for densities pn of Xn , n = 1, . . . generated by the IS, or RWMH strategy. To
obtain this Lipschitz property on densities pn , n = 1, . . ., many assumptions, not always verifiable in
practice, were made on the densities f , q, and p0.

In order to do a unified study of their statistical properties, the contribution of this paper is to
propose some generalized divergences, called α-divergence measures [3], which include as particular
case the above mentioned divergence measure. These divergence measures are the Rényi divergence
Rα(p, q), the Tsallis divergence Tα(p, q) and the α-divergence Dα(p, q) where p and q are probability
density functions. Each divergence measure is characterized by a certain value of the parameter α.

The methodology presented in our paper has the advantage to show, by a graphical study, the
rate of convergence of the simulation strategies IS, RWMH, Gibbs Sampler (GS), and as well as
hybrid and adaptive simulation methods (AM and MWG).

Thus our study provides the ability to compare different methods of stochastic simulation qualified
for a given problem. The use of these α-divergence measures gives a variety of divergence measures
for different values of the parameter α. Using these α-divergences is particularly advantageous since
there is no major requirements on densities pn from simulation strategies and the target density f .
Here the assumptions on the target density f and proposal density q are very often verifiable in
practice. The divergence measures that we use in our study have a common part that is the integral

pn is not the nth power of p but it is the density function of Xn
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which appears in the definition of the α-divergence measures. For our illustrative examples we will
use this integral estimator given by Póczos and Schneider [4].

Now we give more detail about our general study framework. Suppose we have a
probability distribution with density function f from which we want to obtain samples. Suppose also
that the methods of direct simulations are out of reach. Then we use the MCMC methods and
derived methods (adaptive or hybrid simulation methods). The stochastic simulation methods that we
compare in this paper are Idependent Sampler (IS), Random Walk of Metropolis-Hastings (RWMH)
and Gibbs Sampler (GS) which are MCMC methods but also with Adaptive Metropolis (AM) that is
an adaptive method and Metropolis Within Gibbs (MWG) which is hybrid method. These two latter
methods (AM and MWG) are explained more fully in Section 4.

For implementing these different simulation algorithms, one needs in each case a proposal
distribution that generates samples. Note also that each algorithm, depending on the choice of the
proposal law, converges more or less promptly.

This is highlighted when one uses a simulation method with two different proposal distributions
and compares the convergence time of the two resulting algorithms. We recall that for a given
simulation strategy each proposal distribution that one proposes for simulation corresponds to one
algorithm. The convergence time of a stochastic simulation algorithm, here, is actually the time
that the densities pn, n = 1, . . . will put to converge to the target density f . The density function
pn is precisely the density of the nth element of the stochastic process (Xn)n≥1 generated by one
simulation strategy ie, at each iteration n, pn is the density function of the random variable Xn.

This is what explains the interest, if we consider for example the Rényi divergence, to calculate for
each iteration n the value Rα(pn, f). For different iterations n quantities Rα(pn, f) will be represented
by a curve; then the interest is to study the evolution of this curve with respect to the value 0.

In this respect, consider two simulation strategies S1 and S2 for a given target distribution having
density function f . We assume that these strategies S1 and S2 generate respectively the samples
X1,1, X1,2, . . . , X1,n, . . . andX2,1, X2,2, . . . , X2,n, . . .. The densities pn1 and pn2 are respectively density
functions of X1,n and X2,n. If we choose for example the Rényi divergence we can compare the
curves of values Rα(pn1 , f) and Rα(pn2 , f), n = 1, . . . The curve which converges more rapidly to 0
indicates that the corresponding simulation strategy is more efficient.

The paper is organised as follows : in Section 2 we give the definition of estimators of
the α-divergence measures and the methodology for comparing two simulation strategies, and how
to choose an efficient simulation strategy. We show in Section 3 that our divergence measures have
a gaussian asymptotic distribution. Then we have some application examples in order to illustrate
our methodology in Section 4. Finally, in Section 5, we explain the results of our various illustrative
examples.

2 Description and Estimators of Divergence Measures and
Methodology for Finding an Optimal Simulation Method

2.1 Description of divergence measures
Let (X ,A, λ) be an arbitrary measure space with λ being a finite or σ−finite measure. Let also

µ1, µ2 probability measures on X such that µ1, µ2 � λ (absolutely continuous).
Denote the Randon-Nikodym derivatives (densities) of µi with respect to λ by pi(x):

pi(x) =
µi(dx)

λ(dx)
, i = 1, 2.

Definition 2.1. The Kullback-Leibler relative divergence (also called relative entropy) between two
probability measures µ1 ,and µ2 is defined by
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K(µ1, µ2) =

∫
X
p1(x) log

(p1(x)

p2(x)

)
λ(dx) = Eµ1

[
log

p1(X)

p2(X)

]
(2.1)

We can also write K(p1, p2).

On this paper we emphasize on a particular family of Csiszár φ-divergence, that is the
family of α-divergence measures. The Dα divergence Cichocki[5], Ngom[6], the Rényi α-divergence
and the Tsallis α-divergence Cichocki[3] are also part of this family .

Definition 2.2 (α-divergence). The α-divergence is defined by

Dα(µ1, µ2) =
1

α(1− α)

(
1−

∫
X
pα1 (x)p1−α

2 (x)λ(dx)
)
, α > 0 and α 6= 1. (2.2)

Definition 2.3 (Rényi α-divergence). Rényi (1961) for the first time gave one generalization of the
relative entropy given in (2.1). It is defined by

Rα(µ1, µ2) =
1

α− 1
log

∫
X
pα1 (x)p1−α

2 (x)λ(dx), α > 0 and α 6= 1. (2.3)

Definition 2.4 (Tsallis α-divergence). Tsallis α-divergence is defined by

Tα(µ1, µ2) =
1

α− 1

(∫
X
pα1 (x)p1−α

2 (x)λ(dx)− 1
)
, α > 0 and α 6= 1 (2.4)

In these definitions of divergence measures it appears one integral. This integralMα(p1, p2) =∫
X p

α
1 (x)p1−α

2 (x)λ(dx), is common to all of three measures, and it is difficult to be determined. That is
the resason in practice, we need estimators of these α-divergence measures to assess the distance
(similarity) between two density functions.

2.2 Estimators of divergence measures
We first make an estimator of the divergence measure Dα(pn, f), afterward we can have in

the same manner an estimator of Tsallis and Rényi divergences. We work now with λ the Lebesgue
measure defined on X = Rd. Then we have

Dα(pn, f) =
1

α(1− α)

(
1−

∫
Rd

( f(x)

pn(x)

)1−α
pn(x)dx

)
(2.5)

We can initially think to write the integral like a mathematical expectation and apply the method
of Monte Carlo integration. We would have then

Dα(pn, f) =
1

α(1− α)

(
1− E

(( f(X)

pn(X)

)1−α)) (2.6)

If f and pn are such (f(x)/pn(x))1−α is measurable we can use the Strong Law of Large Numbers
we will have the following estimator

D̂α(pn, f) =
1

α(1− α)

(
1− 1

N

N∑
i=1

( f(Xi)

pn(Xi)

)1−α)
,withXi ∼ pn (2.7)

which converges almost surely to Dα(pn, f).
However, in practice, it is more complex because densities pn are often untractables ie it

is difficult to establish their analytical and simple expressions. In addition, in the case of row data,
target densities f are often known up to a multiplicative constant ie f(x) = c0ϕ(x) where c0 is

3390



British Journal of Mathematics and Computer Science 4(24), 3387-3402, 2014

unknown real number. That is why the expression in (2.7) can not be used here . Even if the
density f is entirely known, as in some of examples in Section 4, we prefer using its estimator in
order to be able to use the divergence estimator proposed in Poczos[4]. Then we use the methods
of nonparametric estimation of probability density functions. In fact, Poczos[4] have proposed in
their paper an estimator of probability density based on k-NN method (k Nearest Neighbor). This
probability density estimation method has been introduced by Loftsgaarden[7]. The authors Póczos
and Shneider have used it in Poczos[4], [8]. If we apply their results to our densities f and pn, we
obtain the following density estimators

p̂k,n,N (Xi) =
k/(N − 1)

V (H(Xi, ρk(Xi)))
=

k

(N − 1)c ρdk(Xi)
(2.8)

f̂k,M (Xi) =
k/M

V (H(Xi, γk(Xi)))
=

k

M c γdk(Xi)
(2.9)

Denote by V (H(z, r)) = πd/2rd/Γ((d/2) + 1) is the volume of d-dimensional sphere around z ∈ Rd
with radius r > 0, Γ(.) is the Gamma function and c stands for the volume of a d-dimensional unit
ball.

Recall how these density estimators are constructed in Poczos[4]. LetX1:N = (X1, ..., XN )
be a sample simulated from distribution having density function pn where Xi , i = 1, . . . , N are i.i.d
(independent identically distributed). One can choose one realization Xi on the sample X1:N and
calculate the value ρk(Xi) that is the euclidean distance between Xi and its kth nearest neighbor on
the sample. If the sample Y1:M = (Y1, ..., YM ), where the Yi , i = 1, . . . ,M are i.i.d, is generated from
the density f , then γk(Xi) is the euclidean distance between Xi and its kth nearest neighbor on the
sample Y1:M . Let us note that in practice as in some of our illustrative examples the density function
f can not produce i.i.d samples, then we use an efficient MCMC method for generating a Markov
chain (Xn)n≥1. We know that the elements of the generated Markov chain are not independent. For
that we will overcome this little problem by using the following method. Thus the samples that we use
to estimate the density f are from this Markov chain and are built as follow: when n is sufficiently
large, we choose Xn+r, Xn+2r, . . . , Xn+ir, . . . , Xn+Mr where r is an integer for example such as
r ≥ 10. The fact to make this leap of r elements between samples that we choose allows us to obtain
samples more or less independent.

We can notice in their respective definitions that divergence measures used here have
a common part which is the integral Mα(p1, p2) =

∫ d
R p

α
1 (x)p1−α

2 (x)dx where p1 and p2 are density
functions. As we have already mentioned in the introduction, Poczos[4] have given an estimator of
Mα(p1, p2) that we use in this paper. This estimator is

M̂α,N,M,k(p1, p2) =
1

N

N∑
i=1

( p̂2,k,M (Xi)

p̂1,k,N (Xi)

)1−α
×Bk,α (2.10)

where p̂1,k,N and p̂2,k,M are respective density estimators of p1 and p2; the constant Bk,α is defined
as follow

Bk,α =
(Γ(k))2

Γ(k − α+ 1)Γ(k + α− 1)
with Γ(.) the Gamma function (2.11)

If we replace p1 by pn and p2 by f we can apply the method proposed in Poczos[4] to obtain our
divergence measures estimators

D̂α,N,M,k(pn, f) =
1

α(1− α)

(
1− 1

N

N∑
i=1

( (N − 1)ρdk(Xi)

Mγdk(Xi)

)1−α
×Bk,α

)
(2.12)

T̂α,N,M,k(pn, f) =
1

α− 1

( 1

N

N∑
i=1

( (N − 1)ρdk(Xi)

Mγdk(Xi)

)1−α
×Bk,α − 1

)
(2.13)
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R̂α,N,M,k(pn, f) =
1

α− 1
log
( 1

N

N∑
i=1

( (N − 1)ρdk(Xi)

Mγdk(Xi)

)1−α
×Bk,α

)
(2.14)

that are respectively the divergence estimators of Dα(pn, f), Tα(pn, f) and Rα(pn, f).
The following theorem contains results which prove the convergence of these divergence

estimators. This theorem was developped by Poczos[4] which consist in replacing the densities by
the density functions pn of sampled observations Xn, n = 1, . . . and the target density function f .

Theorem 2.1 (L2 consistency). We have the following assumptions: k ≥ 2, 0 < γ = 1 − α <
(k − 1)/2, pn is bounded away from 0, pn is uniformly Lebesgue approximable, ∃ δ0 such that ∀ δ ∈
(0, δ0)

∫
F (x, pn, δ, 1/2)pn(x)dx <∞,∫

‖x − y‖γpn(y)dy < ∞ for almost all x ∈ Rd,
∫ ∫
‖x − y‖γpn(y)pn(x)dydx < ∞, and that f is

bounded above. Then

lim
N,M→∞

E
((
M̂α,N,M,k(pn, f)−Mα(pn, f)

)2)
= 0 (2.15)

that is, the estimator is L2 consistent.

The function F (x, q, δ, 1/2), with q a probability density, defined in Poczos[4].
Once the divergence measures and their estimators described, one needs to know how to

use these α-divergence measures. In the following section we show the methodology of comparison
of two simulation strategies using the curve described by these divergence measures.

2.3 Methodology
In this present paper we propose to study an optimal stochastic simulation algorithm which

may come from Metropolis-Hastings methods (IS and RWMH), Gibbs Sampler, or recent adaptive
(AM) and hybrid (MWG) methods. For that, we will use our α-divergence measures. The interest of
these divergences is that its subtracts the target density f , the proposal density qi and initial density
p0
i (corresponding to one simulation strategy Si) of many assumptions like in Chauveau[2].

We develop here our methodology that we have slightly discussed in the introduction.
The novelty of our approach lies in the fact it is easy to be implemented, because the divergence
estimators that we use are built independently of any simulation strategy unlike in Chauveau[2]. This
is why we can compare, in addition to IS and RWMH methods compared in Chauveau[2] various
simulation methods. Among these methods we choose the GS, AM, and MWG strategies presented
in the Introduction. However, one can not compare simulation strategies that are not empowered to
solve the same problem. For example, the Gibbs Sampler method, is used when the target density f
is a function defined on E ⊆ Rd with d ≥ 2 and when the conditional densities are available. Thus,
to compare two or more stochastic simulation strategies, one must ensure to have a common target
distribution. Among simulation strategies some are more effective than others, and are intended to
generate samples X1, X2, . . . , Xn, . . . such that when n is large (tends to ∞) then Xn tends to f
as his density function (Xn ∼ f ). It is then appropriate to evaluate at each iteration n the measure
of similarity between the density pn of Xn and the target density f . Here we still use the Rényi
divergence measure for illustration, enven though it is not the only divergence measure used in the
paper. Our methodology allows to have multiple measures of divergence that we can use as needed.
Among them there are well known divergence measures: it is the Hellinger divergence measure
D 1

2
(p, q) and the Chi-square divergence measure D2(p, q) where p and q are density functions.

Assume that we have two simulation strategies S1 and S2 which have respective probability densities
pn1 and pn2 at time n and a target density f . We can use these divergence measures to compare S1

and S2. Indeed, we can compare Rα(pn1 , f) and Rα(pn2 , f), for each iteration n, to see which of S1

and S2 is more efficient. The comparison is made by using curves.
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• If the curve of Rα(pn1 , f) values is closer to 0 than the curve of Rα(pn2 , f) values (ie 0 <
Rα(pn1 , f) < Rα(pn2 , f)), then we can say that densities pn1 converge faster than densities pn2
to the stationary and target density f . Consequently, the simulation strategy S1 associated to
pn1 is more effective than S2.

• If the reverse happens, ie the curve of Rα(pn2 , f) values is closer to 0 than the curve of
Rα(pn1 , f), (0 < Rα(pn2 , f) < Rα(pn1 , f)) we will say that the strategy S2 is more efficient
than S1.

• If the curve of Rα(pn1 , f) is more or less similar to the curve of Rα(pn2 , f) and all are very close
to 0 (Rα(pn1 , f) w Rα(pn2 , f)), we can say that the two simulation strategies S1 and S2 are
equivalent and both efficient.

• If the curve of Rα(pn1 , f) and the curve of Rα(pn2 , f) are far from 0 and slow to approach 0 or
not approaching 0, then both strategies are ineffective.

After presenting the methodology, the knowledge of the distribution of divergence measures
estimators can be useful, but we will not use these distributions, we only present it.

3 Asymptotic Distribution of Divergence Estimators
We seek to know the asymptotic distribution of our estimators. The asymptotic distribution of

these estimators is studied under the assumption of measurability of densities pn and f . If densities
pn , f , and their respective estimators are measurable, we choose N = M and we get the following
results.

3.1 Asymptotic distribution of Dα and Tα divergence estimators
Theorem 3.1. If estimators of densities f and pn are measurable, Xi are i.i.d and
σ2 = limN→∞ V ar(ȲN ) <∞, then

D̂α,N,k(pn, f)
d−→ N

(
Dα(pn, f) ,

σ2B2
k,α

α2(1− α)2

)
, whenN →∞. (3.1)

T̂α,N,k(pn, f)
d−→ N

(
Tα(pn, f) ,

σ2B2
k,α

(α− 1)2

)
, whenN →∞. (3.2)

Proof. We know that Xi are i.i.d, now consider ȲN = 1
N

∑N
i=1 hN (Xi) with hN (Xi) =( (N−1)ρdk(Xi)

Nγd
k

(Xi)

)1−α. Function hN which is the ratio of two measurable functions is also measurable.

We have therefore the independence of hN (Xi), i = 1, . . . , N . We can now apply the Central Limit
Theorem to have asymptotical normal distribution

ȲN − E(ȲN )√
V ar(ȲN )

d−→ N
(
0, 1
)

=⇒ ȲN ×Bk,α
d−→ N

(
Mα(pn, f), σ2B2

k,α

)
We have now

D̂α,N,k(pn, f)
d−→ N

(
Dα(pn, f) ,

σ2B2
k,α

α2(1− α)2

)
, whenN →∞.

T̂α,N,k(pn, f)
d−→ N

(
Tα(pn, f) ,

σ2B2
k,α

(α− 1)2

)
, whenN →∞.
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3.2 Asymptotic distribution for Rényi divergence estimator
Theorem 3.2. If estimators of densities f and pn are measurable, Xi are i.i.d. ∼> pn, σ2 =
limN→∞ V ar(ȲN ) <∞ and δ2 = limN→∞ V ar(hN (X) <∞ with X ∼> pn, then

R̂α,N,k(pn, f)
d−→ N

( 1

α− 1
log[Mα(pn, f)] ,

δ2B2
k,α

(α− 1)2[Mα(pn, f)]2

)
(3.3)

Proof. For determining the asymptotic distribution of the estimator of the Rényi divergence,
we use the Delta method. Next, onsider this mean ȲN = 1

N

∑N
i=1 hN (Xi). We know that Xi are i.i.d.

and hN is measurable, then hN (Xi) are also i.i.d. The Central Limit Theorem gives us the following
result
ȲN−E(ȲN )√
V ar(ȲN )

d−→ N (0, 1) implying,

√
N
(
ȲNBα,k −Mα(pn, f)

) d−→ N
(
0, δ2B2

k,α

)
, (3.4)

Relation (3.4) allows us to apply the Delta method to obtain

√
N
(

log(ȲNBk,α)− log(Mα(pn, f)
) d−→ N

(
0,

δ2B2
k,α

[Mα(pn, f)]2

)
.

Hence we obtain the result

R̂α,N,k(pn, f)
d−→ N

( 1

α− 1
log[Mα(pn, f)] ,

σ2B2
k,α

(α− 1)2[Mα(pn, f)]2

)

4 Examples
We will now illustrate our methodology with simple examples. That’s why we only give some

examples in 1-dimensional and 2-dimensional cases. In the following examples, we will use α-
divergence measures to compare firstly proposal densities corresponding to one given simulation
strategy. Recall that for drawing samples from density function f by a given simulation method one
needs a proposal distribution with density function q, an initial distribution with density p0. The interest
here is to compare, for a given target law, the different proposal distributions that are candidates. The
comparison is more relevant if the different generated chains have the same starting point ie the
same initial distribution. One can now try to find among these proposal densities qi , i = 1, . . . , N
those that allow to obtain better results (the speedy convergence of the algorithm). After this first
example (Fig. 1) we will mainly compare different simulation strategies in the four others examples.
As we have already said, two simulation strategies can not be compared if they do not have the
same target density. In all our examples the proposal distributions that we use are just examples
to illustrate our methodology. Someone might choose to take others; for example in Example 1 he
could choose to change the two proposal laws. The sizes of sample drawn from distributions with
density functions pn and f are equal for all examples, ie M = N . The value of k must be known, now
empirical experiments have suggested to take k equals to the integer part of

√
N Loftsgaarden[7]. In

this section we only present the results, the explanations will be made in the Section Discussion.

4.1 One-dimensional case

4.1.1 Target density f fully known

For the two first examples we have chosen target densities that are fully known. It comes
the normal distribution in the first case and a Gaussian mixture in the second case. We will in the
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first instance use the IS strategy to compare two proposal densities; then in the second example we
compare the IS and RWMH strategies.

a) Independence Sampler (IS): comparison of proposal densities
For a given simulation strategy, the choice of an efficient proposal density (or proposal

distribution) is important. Indeed, for achieving satisfactory simulation results it is important to choice
an efficient proposal density. For simplicity, we consider densities that differ by the value of their
parameters. Assume that the standard normal law N (0, 1) is the target distribution here, consider
that its density function is f . To implement the IS simulation method we propose, for example here,
two candidate proposal distributions that are N (−3, 2) and N (0, 3). We want to know if these two
proposal distributions are all efficient or which of the two is more effective. If densities pn1 and pn2 are
respectively generated by N (−3, 2) and N (0, 3) we compare now for all n the curves D2(pn1 , f) and
D2(pn2 , f). The Figure 1 shows that the curve associated to the law N (0, 3) converges faster to 0
than the other curve (more details in Section Discussion).

Figure 1: Comparison of two proposal densities, using the Independence Sampler and the Chi-squared
divergence (Dα with α = 2)

b) IS - RWMH : comparison of simulation strategies
After finding a good proposal distribution for each strategy, we compare here the two main

strategies of Metropolis Hastings algorithm that are IS and RWMH. It may happen in an experiment
that the IS strategy trumps RWMH strategy and in another experiment the opposite occurs. Everything
depends on the instrumental distribution but also the target distribution to some extent, even if the
initial law is the same for both strategies.

Here the chosen target distribution is a gaussian mixture 0.4N (−8, 2) + 0.6N (0, 6). For
the IS we use the proposal distribution N (−2.5, 15) whereas for RWMH method we propose to
take N (x, 15). This distribution has a mean equal to the current element Xn = x. We show the
comparison of IS and RWMH strategies (Fig. 2). Note that the curve associated with IS strategy is
below curve associated with RWMH. The explanations are given in section Discussion.
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Figure 2: Comparison of two simulation strategies: IS vs RWMH, using the Chi-squared divergence (Dα with
α = 2)

4.1.2 Target density f is known up to a multiplicative constant

Adaptive Metropolis - RWMH: comparison of simulation strategies
In most real situations, the target density f is not analytically known. This is the case, for

example Bayesian context where f is the density of the posterior. Then f is written as f = cϕ where
c is unknown constant. The target density f , used here, is known up to a multiplicative constant. The
AM simulation strategy less known than Metropolis - Hastings samplers (IS and RWMH) is presented
here in more details.

We present some Adaptive Metropolis (AM) strategy proposed by Haario[9]. First recall
that the stochastic process generated by this simulation method is not a Markov chain. However it
has well ergodicity properties. The assumption on the target density is that it is bounded from above
and has a bounded support.

The target density has a support E ⊂ Rd, d ≥ 1. Suppose, that at time t we have
sampled the states X0, X1, . . . , Xt−1, where X0 is the initial state. Then a candidate point Y is
sampled from the proposal distribution Qt( . |X0, ..., Xt−1), which now may depend on the whole
history (X0, X1, ..., Xt−1). The candidate point Y is accepted with probability

α(Xt−1, Y ) = min
(

1,
π(Y )

π(Xt−1)

)
in which case we set Xt = Y , and otherwise Xt = Xt−1. Observe that the chosen probability for the
acceptance resembles the acceptance probability of the Metropolis - Hastings algorithm in symmetric
case. The proposal distribution Qt( . |X0, . . . , Xt−1) employed in the AM algorithm is a Gaussian
distribution with mean equal to the current point Xt−1 and variance

Ct =

{
C0 , t ≤ t0
SdCov(X0, . . . , Xt−1) + SdεId , t > t0 .
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where Sd is a parameter that depends only on dimension d and ε > 0 is a constant that we may
choose very small compared to the dimension of the space E. Here Id denotes the d-dimensional
identity matrix.

For these two simulation methods (AM and RWMH) we see that the respective divergence
measures are very closely and very quickly all tend to 0 (Fig. 3). Here the divergence used is the
Hellinger divergence measure D1/2. The target density is f(x) ∝ exp(−x2)(2 + sin(5x) + sin(2x)).

Figure 3: Comparison of two simulation strategies: AM vs RWMH, using the Hellinger divergence (Dα with
α = 1/2).

4.2 Two-dimensional case
We consider again here a target density function known up to a multiplicative constant. We

choose now samples X1, . . . , Xn which are i.i.d such that Xi ∼ N (m,σ2). So we have the following
likelihood

L(x|m,σ2) ∝ (σ2)(−n/2) exp
(
− 1

2σ2

n∑
i=1

(xi −m)2
)

(4.1)

the prior distributions are
m ∼ N (m0, σ

2
0)

σ2 ∼ IG(α, β),

the full posterior density is known up to a constant

Π(m,σ2|x) ∝ (σ2)−
n
2
−(α+1) exp

(
− 1

2σ2

n∑
i=1

(xi −m)2 − (m−m0)2

2σ2
0

− β

σ2

)
,

the conditional distributions of parameters are

m|σ2, x ∼ N (M,Σ2)
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where

M =
σ2

0

∑n
i=1 xi + σ2m0

σ2 + nσ2
0

and Σ2 =
σ2σ2

0

σ2 + nσ2
0

σ2|m,x ∼ IG
(n

2
+ α,

1

2

n∑
i=1

(xi −m)2 + β
)

So let’s compare firstly RWMH and Gibbs Sampler (GS) and secondly we will compare RWMH and
Metropolis Within Gibbs (MWG). The likelihood in (4.1) will be our target density function.

a) RWMH - GS: comparison of simulation strategies
If RWMH is applied in dimension d ≥ 1 , the GS is only applied in dimension d > 1

ie for a multivariate probability distribution. However, we study GS here only in dimension 2. Note
that this method (Gibbs Sampler) has been used by Geman [10] to generate observations from a
Gibbs distribution (Boltzmann distribution) (Latuszyński [11]). It is an efficient MCMC method and
is widely used in Bayesian analysis. For drawing observations from a probability density f(θ) with
θ = (θ1, . . . , θp) we can use the following algorithm

Algorithm 4.1. 1. Initialisation: generating a vector θ(0) = (θ
(0)
1 , . . . , θ

(0)
p ) from one initial law Π0.

2. Repeat for j = 0, 1, 2, . . . ,M simulation from the conditional distributions fi(θi|θ1, . . . , θi−1, θi+1, . . . , θp)
i = 1, 2, . . . , p,

• generate θ(j+1)
1 ∼ f1(θ1|θ(j)

2 , . . . , θ
(j)
p )

• generate θ(j+1)
2 ∼ f2(θ2|θ(j+1)

1 , θ
(j)
3 , . . . , θ

(j)
p )

...

• generate θ(j+1)
p ∼ fp(θp|θ(j+1)

1 , θ
(j+1)
2 , . . . , θ

(j+1)
p−1 )

3. Return the values {θ(1), θ(2), . . . , θ(M)}

We see that the curve corresponding to RWMH strategy is well above curve representing
the GS method (Fig. 4). As mentioned in the legend, the dashed curve is associated to RWMH while
the solid curve is associated to the GS algorithm.

b) RWMH - Metropolis Within Gibbs: comparison of simulation strategies
Metropolis Within Gibbs (MWG) is a hybrid simulation method that combines stages of

the Gibbs Sampler and Metropolis Hastings method. It is used in some cases where we use GS and
have conditional distributions for which we can’t directly sample. There are several versions of this
sampler, so we present the following.

Assume that π(.) is the target density, π(.|z−i) denote now the conditional distribution of
Z|Z−i = z−i where Z ∼ π. Xn := (Xn,1, . . . , Xn,d); Xn,−i := (Xn,1, . . . , Xn,i−1, Xn,i+1, Xn,d);
α := (α1, . . . , αd). Now we have the following algorithm.

Algorithm 4.2. 1. Choose coordinate i ∈ {1, . . . , d} according to selection probabilities α, that is,
with P(i = j) = αj .
2. Draw Y ∼ q(Xn−1,i, .).
3. Accepte the candidate Y with probability

min
(

1,
π(Y |Xn−1,−i)q(Y,Xn−1,i)

π(Xn−1,i|Xn−1,−i)q(Xn−1,i, Y )

)
and set Xn := (Xn−1,1, . . . , Xn−1,i−1, Y,Xn−1,i+1, . . . , Xn−1,d)
otherwise reject Y and set Xn = Xn−1.

Starting from a common point, the curves stay away from the value 0 (Fig. 5). The solid
curve is associated with MWG strategy and the dashed curve associated with RWMH strategy. Here
we use the Rényi divergence measure for doing comparison between strategies.
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Figure 4: Comparison of two simulation strategies: GS vs RWMH, using the Tsallis divergence with α = 0.99.

5 Discussion

5.1 Independence Sampler : comparison of proposal densities

The divergence measures D2(pn1 , f) and D2(pn2 , f) are functions of the number of iterations
n and are represented by the curves in Figure 1. As already stated, the fact that these curves have
the same starting point can be explained by relevance to begin with a same state x0 or same initial
law π0 to compare two simulation strategies. However, we have chosen one same starting point
drawn from the initial distribution. The dashed curve (IS with N (0, 3) ) is below the solid curve (IS
with N (−3, 2) ). It follows that, the IS strategy with the proposal law N (0, 3) is more efficient than
IS with N (−3, 2) because its mean m = 0 is equal to the mean of the target distribution N (0, 1).
Its variance σ2 = 3 is greater than the variance of the target distribution which is σ2 = 1. It follows
that its support covers the support of the target density. Thus the proposal law N (0, 3) is closer to
N (0, 1) than proposal distribution N (−3, 2). This is why the samples X0, X1, . . . , Xn, . . . generated
by the strategy IS withN (0, 3) converge in distribution more quickly to a random variable X having as
probability distribution the target law N (0, 1), than the random observations Y0, Y1, . . . , Yn, . . . drawn
from the IS with N (−3, 2).

5.2 Independence Sampler - RWMH

In the Figure 2 the solid curve is below the dashed curve. This shows that IS strategy is more
efficient than the RWMH strategy. This is explained by the right choice of the proposal distribution
N (−2.5, 15) for the IS strategy. With a mean m = −2.5 and a variance σ2 = 15, the density function
of this law is centered relatively to the target density f(x). Thus the support of the target density is
well covered by this proposal density.
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Figure 5: Comparison of two simulation strategies: MWG vs RWMH, using the Rényi α-divergence with
α = 0.3.

Regarding the RWMH strategy, after a first jump before the 20th iteration the dashed curve makes a
big jump to reach the value 3.28 at the 50th iteration (Fig. 2). This implies that this RWMH algorithm
is not still stable. Therefore the convergence to the target distribution will be slowly. This is explained
by the fact that the proposal distribution N (xn, 15) depend, at each iteration n, on the current state
Xn = xn. Unlike the density function of the distribution N (−2.5, 15) which is all the time centered
on a well chosen value -2.5, the density function of the distribution N (xn, 15) is centered, at each
iteration n, on the variable value xn. Consequently the convergence of the process (Xn, 0 ≤ n ≤ N)
generated by the RWMH algorithm to the target distribution 0.4N (−8, 2)+0.6N (0, 6) depends greatly
on the initial state X0 = x0.

5.3 Adaptive Metropolis - RWMH

The curves which describe the effectiveness of simulation strategies AM and RWMH are shown
in Figure 3. We note that these two curves are almost similar. Besides this, these curves evolve while
remaining close to 0 when n is large even if we are limited, here, to 100 iterations. Thus, the two
corresponding simulation strategies are all very efficient. The efficiency of AM strategy is explained,
by the fact that it adapts its proposal density to the target density f(x) = c exp(−x2)(2 + sin(5x) +
sin(2x)), where c is unknown constant . The adjustment mechanism is performed on the variance of
proposal distribution. In this respect, if X1, X2, . . . , Xn−1 have already been simulated and one wants
to obtain a new point Xn, he draws it from a Gaussian proposal distributionN (xn−1, σ

2) having mean
equal to the current state Xn−1 = xn−1 and variance σ2 = Ct. Ct is the covariance matrix described
in section 4.1.2. But here the variance σ2 = Ct is a real value (one-dimensional case). Recall that
the AM strategy acts on the variance σ2 of the proposal law. The updating of this variance starts
from the 16th iteration ( arbitrary choice in this example ). We have chosen the value of the variance
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σ2 = 5 between the first and the 15-th iteration. The behavior of the curves in Figure 3 shows that this
value of the variance σ2 = 5 is acceptable for the both simulation strategies AM and RWMH since the
proposal law for RWMH method is N (xn−1, 5). Also, the adjustments on the variance σ2, made by
th AM method, enable to have good drawn points X0, X1, . . . , Xn, . . .. Therefore the two simulation
methods AM and RWMH are all efficient here.

5.4 Gibbs Sampler - RWMH
We study here two simulation methods in 2-dimensional case using the Tsallis α-divergence

measure, with the parameter α = 0.99 (this value is a simple choice). The dashed curve (RWMH) is
above the solid curve (GS) and far from the value 0 after 50 iterations. It shows, here, that our RWMH
strategy is ineffective. This inefficiency is due to the bad choice of covariance matrix

M =

[
12 8
8 15

]
of the proposal distribution. This matrix, which is an implementation parameter, is not optimal. The
choice of this matrix is merely illustrative. Thus, with a bad chosen parameter ( matrix ), as it is the
case here, the resulting algorithm will be inefficient. The solid curve (GS) tends rapidly to 0 (after the
7th iteration). Recall that the Gibbs Sampler is generally very effective. Its implementation is made
possible when the conditional distributions having density functions fi(θi|θ1, . . . θi−1, θi+1, . . . , θp)
(ref. Algorithm 4.1 ) are available. The strength of this sampler is mainly due to the fact that
the components of the vector X(n) = (m(n), σ2(n)

) are generated directly from the conditional
distributions of the target distribution L(x|m,σ2) defined in equation (4.1).

5.5 Metropolis Within Gibbs - RWMH
Here we compare the previous RWMH strategy in section 5.4 and MWG algorithm. We now

study the efficiency of a classical Metropolis - Hastings algorithm (RWMH) and a hybrid algorithm
which combines Metropolis - Hastings algorithm and Gibbs Sampler ( MWG ). This simulation method
( MWG ) is used in specific situations, ie in case where one uses the Gibbs Sampler and, for a few
conditional distributions fi(θi|θ1, . . . θi−1, θi+1, . . . , θp) used in Algorithm 4.1, he can’t directly simulate
the observations. Then he can introduce in the Gibbs Sampler algorithm a few steps of RWMH
sampler (ref. Algorithm 4.2).

In this example ( MWG - RWMH ) we use a version of the MWG algorithm which
systematically gives proposal probability distribution to each conditional distribution in Gibbs sampler
(Metropolis sampler steps), so that its convergence time is very elongated (Fig. 5). Our RWMH
strategy also used in section 5.4 is ineffective. This is the reason that the two curves are all far
from 0 even after 1000 iterations (Fig 5), reflecting, here, the ineffectiveness of these two simulation
algorithms.

5.6 Conclusion
We have shown that with various divergence measures we can compare two different simulation

strategies solving one stochastic simulation problem for determining the optimal algorithm. This
comparison lead us to determine the effectiveness or no of a stochastic simulation algorithm. For
doing this study, our paper has been structured as follows. In Section 2 we have described the α-
divergence measures, estimators of these divergence measures and we have given a methodology
for choosing an optimal simulation strategy. In Section 3 we have given the asymptotic distributions
of Dα, Tα and Rα divergence estimators. Then in Section 4, we have given some examples for
implementing our diverse simulation strategies, thus it allowed us to illustrate our methodology. Finally
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we have given, in Section 5, the explanations about the behavior of curves in different graphics.
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