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ABSTRACT

In this paper, we focus on estimations of fine particulate matter by combining MODIS
satellite Aerosol Optical Depth (AOD) with Weather Research Forecast (WRF) PBL
information using a neural network approach and assess its performance. As part of our
analysis, we first explore the baseline effectiveness of AOD and PBL as relevant factors
in estimating PM2.5 in passive radiometer and active lidar data at CCNY and
demonstrate that the PBL height is the most critical additional parameter for accurate
PM2.5. Furthermore, active measurements from both ground and satellite based lidar are
used to show that summer WRF model PBL heights are most accurate. We then expand
our analysis to a regional domain where daily estimations are obtained and compared
with operational GEOS-CHEM PM2.5 product. Using our approach, we also create
regional daily PM2.5 maps and compare against GEOS-CHEM outputs. Finally, we also
consider additional improvements, where multiple satellite observations are used as
regressors to predict PM2.5. These results illustrate the significant improvement we
obtain within this framework in comparison to a “one size fits all continental scale
approach”.
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ACRONYMS

AERONET: AErosol RObotic NETwork: AOD: Aerosol Optical Depth; CALIOP: The Cloud-
Aerosol Lidar with Orthogonal Polarization; CALIPSO: Cloud-Aerosol Lidar and Infrared
Pathfinder Satellite Observations; CCNY: The City College of New York; CMAQ: Community
Multiscale Air Quality; DEM: Digital elevation in meters; EPA: United States Environment
Protection Agency; IDEA: Infusing satellite Data into Environmental air quality Applications;
IDW: inverse distance weighting; LIDAR: Light detection and ranging; MODIS: Moderate
Resolution Imaging Spectroradiometer; NASA: National Aeronautics and Space
Administration; NN: Neural network; NYSDEC: New York State Department of
Environmental Conservation; NYSERDA: New York State Energy Research and
Development Authority; PBL: Planetary boundary layer; PM: Particulate matter; PM2.5: Fine
particulate matter with particle diameters less than 2.5 microns; RH: relative humidity;
RSIG: Remote Sensing Information Gateway; TEOM: Tapered Element Oscillating
Microbalance; WRF: Weather Research Forecast

1. INTRODUCTION

The quantification of fine scale particulate matter is a major concern to the health community
because it can be easily inhaled deep into the lungs, resulting in oxidative inflammation in
vital organs. In particular, fine particulate matter with particle diameters less than 2.5 microns
(PM2.5) has been linked to respiratory and pulmonary difficulties and for this reason, strong
concentration guidelines have been developed by the U.S. Environmental Protection Agency
(EPA) to limit exposure [1-3].

To assess compliance, the EPA (as well as relevant state agencies) generally rely on air
quality measurements at the surface through specialized and expensive ground-based
monitors which unfortunately limits the spatial extent of a quality controlled air quality
network such as AIR Now.  In order to overcome this limitation and to provide useful spatial
distributions of surface level PM2.5, satellite remote sensing of aerosol properties has
become a major tool.

In particular, significant efforts have been made to connect Aerosol Optical Depth (AOD)
which is a measure of the path integrated aerosol extinction (i.e. opacity measure) to
estimate ground-level PM2.5. For example, Zhang, et al. [4] performed a geographical
comparison over the 10 EPA regions across the United States using AOD. They used
seasonal regression relations for each region to estimate the PM2.5 from AOD retrievals.
However, an “exact” relationship cannot be derived due to a wide range of factors, such as
the large variability of aerosols, the effects of meteorology and the vertical structure of
aerosols which is often (but not always) constrained by the Planetary Boundary Layer (PBL)
height.  In particular, if aerosols are well mixed and trapped within the PBL, it is very
reasonable that the surface PM2.5 should be sensitive to the PBL height. In fact, we would
expect a generally inverse relationship between PBL height and PM2.5 for a fixed AOD.
Such conditions can be expected to occur in cases where convective heating dominates
mechanical shear (eg. urban heat island).  However, such behavior is not always met under
real conditions. In a study conducted in Taiwan, Tsai et al. [5] studied seasonal variation in
the relationship between PM2.5 and AOD. Unlike our analysis where correlations were
strongest in the summer, they found higher correlations in the fall which they attribute to a
relatively stable and well mixed boundary layer, whereas lower correlations found in the
summer were attributed to the strong convection associated with unstable weather systems
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over this period dominated by thunderstorms and typhoons [5]. These patterns are clearly
not the same as those of the US North East where urban heating leads to much more stable
conditions in the summer. Another study conducted in France by Boyouk et al. [6] found
improved PM2.5–AOD correlations when the mixed boundary layer was considered.
Moreover, the incorporation of meteorological variables, such as temperature (TEMP) and
relative humidity (RH), into developed models also improved the PM2.5 prediction [7], and
according to Gupta et al. [8], the best correlation between fine particulate matter (PM2.5)
and AOD is seen when the PBL height is small and when the relative humidity is less than
50%. However, Schaap et al. [9] pointed out that the PM2.5–AOD correlation increased
when comparisons were made at mid-day, suggesting that aerosols were much better mixed
in the boundary layer during that time. It is also expected that relative humidity should also
have an impact on the AOD (and this AOD to PM2.5 factors) via an increase in the size of
the particles and a change in the refractive index (Hänel) [10].

In another approach, the use of highly sophisticated models as opposed to statistical tools
has been attempted to account for factors such as relative humidity modification, aerosol
speciation in homogeneity and complex PBL height dynamics [11-13]. As a prototypical
example, the global model (GEOS-CHEM) is being used to estimate, on a daily basis, the
spatial relationship between PM2.5 forecast and column path AOD which can then be used
in conjunction with satellite AOD retrievals.

The GEOS-CHEM PM2.5/AOD approach has been extensively developed as part of now
operational IDEA (Infusing satellite Data into Environmental air quality Applications) product
and has matured to the level that real time spatial maps of PM2.5 are operationally available
[14]. In summary, the IDEA algorithm approach uses fused MODIS Terra-Aqua satellite
retrievals to calculate an average AOD product which is combined with low resolution
GEOS-CHEM PM2.5/AOD ratios. Unfortunately, the low spatial resolution (0.5 deg) reduced
the effectiveness of this approach in dealing with urban-suburban domains.

Fig. 1 illustrates the GEOS-CHEM PM2.5/AOD and its comparison to the CMAQ
PM2.5/AOD for the summer period.  While many of the spatial structures in the image are
similar, it is clear that the magnitude of the ratios is very different and the GEOS-CHEM has
a broader variability in the PM2.5/AOD ratio which can manifest itself in higher bias when
standard bias correction is applied.

It is clear that the aerosol optical property estimation between the models is not consistent.
Part of the poor model agreement likely stems from the fact that high resolution models,
such as the WRF/CMAQ (Weather Research Forecast/Community Multi scale Air Quality)
model strongly couples meteorological factors, PBL height and surface boundary conditions
including emission inventories to estimate particulate concentrations and vertical
distributions [15,16]. In addition, the humidification of the aerosols is very difficult to treat
rigorously. To see more clearly, the differences between the use of CMAQ or GEOS-CHEM,
we plot in Fig. 2, the statistical histograms for summer conditions. Here, we see that the
GEOS-CHEM results are very biased in comparison to the ratio between the AIR Now sites
and the satellite AOD. Much better agreement is seen when compared against the CMAQ
model.
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Fig. 1. Spatial comparison of PM2.5/AOD ratios (ug/m3 AOD) for different models
(a) GEOS-CHEM (b) CMAQ New York State

Unfortunately, using high resolution AIR Quality models is very time and computer resource
consuming and are not generally available in real time. On the other hand, using the WRF
meteorological retrievals on their own is less
time consuming and operationally simpler since
the WRF modeling is generally much more
straight-forward. Therefore, combining the
satellite AOD with PBL height data seems to be
a sensible compromise between the statistical
and the fully coupled model approach. In
addition, it should be pointed out that the model
estimates of PM2.5 to AOD factors are strongly
dependent on the quality of aerosol
microphysics and adjustments to RH that are
used. Unfortunately, it is generally agreed that
the nature of the aerosols and the
microphysical size distributions are very
difficult to model making complete reliance on
these models for PM-AOD factors less than
ideal.

However, to use model based PBL heights, we need to assess the potential of the models to
qualitatively and quantitatively measure reasonable PBL heights. It is this particular demand
that forces us to go beyond passive satellite remote sensing alone and to use active lidar
based retrieval methods including ground based lidar at the City College of New York
(CCNY) as well as spaced based active lidar (CALIOP) on board the CALIPSO platform. It is
the combination of these tools that allow us to better understand when and why PBL
information may be of use in improving PM2.5 estimates from AOD. The focus of this paper
is to illustrate the application of data fusion from active and passive remote sensing from
both ground based platforms as well as satellites instruments to synergistically provide
insights into the estimation of PM2.5 in local as well as regional level. Furthermore, this
paper specifically focuses on the New York state area, where data from several ground
stations was available.  In section 2, the general methodology involved in assessing PM2.5
against ground truth is discussed. In section 3, results pertaining to local relationships
between ground-based AOD and lidar derived PBL heights with surface PM2.5 using
combined active and passive remote sensing are given. In section 4, the use of WRF based
PBL heights and satellite AOD’s are explored within a neural network (NN) approach and
additional factors such as seasonality and spatial location are considered. In section 5,
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further enhancements using additional satellite measurements are explored. Conclusions
and future directions will be given in section 6.

2. DATA AND METHODOLOGY

A total of 41 stations are used for urban/non-urban seasonal comparisons between ground
PM2.5 and satellite/model PM2.5. Fig. 3 illustrates the locations of the stations as well as the
urban classification, which is primarily based on site location; mostly, stations located in the
New York City metro area are depicted as urban. Appendix 1 lists the stations with their
geographical coordinates as well as the urban classification (urban = 1, non-urban = 0) and
digital elevation (DEM) in meters. We focus on the NY State in this paper since the research
is supported by the New York State Energy Research and Development Authority
(NYSERDA) but the general approach should be expected to be reasonably compatible to
wider domains.

In order to assess the PM2.5-AOD relationship on a regional scale, we have collected
satellite AOD collection 5 data from the Moderate Resolution Imaging Spectroradiometer
(MODIS) on board of TERRA and AQUA for the period corresponding from January 1, 2006
to December 31, 2007. Also, hourly PM2.5 data from the New York State Department of
Environmental Conservation (NYSDEC) have been collected along with WRF/CMAQ
planetary boundary layer height from the Remote Sensing Information Gateway (RSIG,
URL:http://ofmpub.epa.gov/rsig/rsigserver?rsig2D.html) of the United States Environmental
Protection Agency (EPA). Datasets are converted to daily averages following EPA
regulations for further comparisons with GEOS-CHEM products. In order to assess the
model PBL, data from the satellite CALIPSO were also used.

On the local scale, AOD as well as fine mode contributions are acquired from an AERONET
(AErosol RObotic NETwork) Cimel sun/sky radiometer (CE-318) [17-19]. The PBL height is
directly obtained using a Lidar (Light Detection and Ranging) instrument collocated at the
City College of New York [20,21] and the PM2.5 is obtained on an hourly period from a
TEOM (Tapered Element Oscillating Microbalance) instrument. Finally, meteorological
information (relative humidity, wind speed, etc.) are collected and used to perform additional
factor comparisons between ground measurements and remote sensing data.

In developing useful PM2.5 estimators on a regional
scale, we will use neural networks to study the
relationship between PM2.5 and AOD, which is
known to be complex and nonlinear. Neural
networks have proven to perform well in different
areas of study, including atmospheric sciences
where many complex relationships cannot be
sufficiently understood by using statistical
approaches [22-24]. Our focal point is the application
of neural network method for improved PM2.5
estimation over long time periods, while at the same
time investigating other dependences such as
additional factors or seasonal changes. When
training the neural network, we split the data in the
interleaved mode to ensure that all sectors of data
are chosen. We used Bayesian regulation
backpropagation method [25], which is done by the
‘trainbr’ function provided by the neural network
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toolbox in Matlab (http://www.mathworks.com/products/neural-network/index.html). The
training function updates the weight and bias values according to the Levenberg-Marquardt
optimization with mean square error as the performance function. This is a very robust
method, which minimizes a linear combination of squared errors and weights. At the end of
the training the resulting network has good generalization qualities. We describe the
outcomes of our studies in the next section.

3. LOCAL RESULTS

3.1 Infusing CCNY LIDAR PBL Information

While strong correlations can be found connecting AOD to PM2.5 in the North East, the PBL
height information can be expected to provide significant improvement. We now want to
directly study the impact of adding the PBL in the neural network input. We use the 1064 nm
channel measurement to derive the PBL height since this channel is less sensitive to
molecular backscatter and attenuation, which means the lidar signal, is mostly contributed by
aerosols. The PBL typically contains greater aerosol concentration than the overlying
troposphere and hence has larger backscatter. The lidar data are processed using the
Wavelet transform for PBL height calculations [26,27]. Note that the lidar can see aloft
plumes and clouds allowing us to filter out these poor cases [28]. Fig. 4 show examples of
the daily variability of the PBL height. During the cold months (Fig. 4(a)) PBL heights are
small (HPBL< 1.2 km) in comparison to the heights observed during the summer (Fig. 4(b)).
Moreover, the gradual increase of the planetary boundary layer observed in the warm
months also indicates an unstable although well mixed nature. Finally, the use of lidar
provides an additional quality control by removing cases with significant upper atmospheric
plume activity (see Fig. 4(b)).

Fig. 4.  CCNY Lidar images at 1064nm-channel and PBL-height (black dots):
(a) January 11, 2010 and (b) June 30, 2010.
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To further explore the role of PBL affecting
PM2.5- AOD relationship we explore both
the monthly and diurnal variations of PBL
height.  Fig. 5 shows the hourly and
monthly variation of the PBL height during
2010, with higher values seen late in the
afternoon during the summer (HPBL > 1.5
km). Smaller values (HPBL < 1.2 km) are
recorded during most of the winter and fall.
Again, more stable heights are retrieved
when temperature is low in comparison to
the diurnal cycle observed with high
temperatures. Since most aerosols reside in
the planetary boundary layer, the PBL
height variability should clearly contribute in
the analysis of the PM2.5–AOD relationship
in order to improve model estimation.

3.1.1 Relevance of PBL information

In addition to supplying PBL height information, we explored the potential effect of
meteorological variables such as temperature, relative humidity and wind speed in
combination with the AOD as regressors to the neural network input. These case studies
helped to discover the relevance of different variables by checking the efficiency of the
neural network in estimating fine particulate matter. As shown in Fig. 6, yearly comparisons
show that the planetary boundary layer height information resulted in the highest correlation
(R~0.7) when paired with total AOD as inputs for the neural network over other parameters
such as temperature, relative humidity and wind speed. Besides PBL information, the
addition of temperature data also produced a considerable improvement in correlation
(R~0.6). This is expected since the PBL height is correlated at some level with the surface
temperature, as stronger convection and deeper PBL layers are associated with higher
temperatures. All other variables show nearly no effect on the PM2.5-AOD relationship
(R~0.5).

3.1.2 Seasonality

In estimating PM2.5, additional underlying seasonal changes can be expected to occur due
to modifications of their environment, which would vary with the season. Fig. 7 illustrates this
variation when applying total AOD and PBL height information together with month as inputs
for our neural network during different seasons. As expected due to the well-mixed PBL
development in an urban environment, summer returned the highest performance (R~0.94)
while fall and spring performed similarly (R~0.77). Surprisingly, winter seems to shows a
better performance (R~0.87) but it must be remembered that lidar measurements rely on
human supervision so that measurements in winter are very scarce and it may be expected
that with such scarce data, good data matchups may be made with the fewest number of
cases for comparisons. The benefits of seasonal filtering, when compared to yearly results is
most dominant in the summer which is expected since the PBL development and mixing is
strongest during urban summer conditions. It should also be borne in mind that summer is

Fig. 5. Hourly-average PBL heights derived
from lidar measurements

in 2010.
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when the highest PM2.5 cases occur in general and where exceedance observations are
most critical. This makes summer evaluation particularly useful.

Fig. 6. Neural network results using additional parameters showing general
improvements when other variables are considered in the PM2.5-AOD relationship
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Fig. 7. (a) Seasonal correlation and (b) root-mean-square-error

While breaking up the data directly and using different neural networks for different cases
may be optimal, it may be useful to explore the use of adding seasonal data directly into the
NN training stream. To accomplish this we added month information as an extra input to our
neural network and compared to our previous results. Using total AOD plus month as inputs,
our correlation value returned a notable improvement (R~0.64). Table 1 show that addition
of the month label consistently and significantly improves the correlation, confirming the
PM2.5-AOD dependency on seasonality

Table 1. Comparisons between neural networks without/with month information
added. The correlation (R) values are shown in the corresponding cells

Seasonal
information

AOD
only

AOD+
PBL

AOD+
Vol/Ext

AOD+
Temp

AOD+
Wind

AOD+
Wind-dir

AOD+
RH

None 0.5099 0.7033 0.5316 0.5914 0.5243 0.5092 0.5451
Month 0.6354 0.7451 0.6443 0.6573 0.6480 0.6380 0.6486

3.2 Assessment of Model PBL

Since our goal is to estimate PM2.5  on a bigger scale, our variables need to be available for
a larger domain. Satellite AOD does provide spatial coverage at some extent with the
combination of both Terra and Aqua. However, ground lidars are clearly not helpful and the
space based CALIPSO lidar swath is so narrow that the orbit revisit time of 16 days is also
not accommodating enough. Clearly, to compensate for the lack of ground instrumentation,
the use of model data is essential for our regional application.

To evaluate the efficacy of the model in estimating PBL height, we compare it against
CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) derived PBL
height. The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) is the primary
instrument on CALIPSO, which is part of the NASA A-train constellation of satellites [29].
Fig. 8 illustrates different features extracted from CALIPSO measurements along the
track, including PBL height at different latitudes between 19:45 and 19:50UTC on August 8,
2007. In making comparisons, we filter matchups so that we use only single layer data in
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order to assure no aloft layers or clouds are
included which degrades both the lidar
retrieval product as well as model
meteorology effects.

Table 2 illustrates comparisons between
CALIPSO and WRF PBL height. These
comparisons were performed taking CCNY
as center with a filter radius of 1 degree.
From this, a reasonable agreement can be
observed between the model and the
instrument for the summer season
which validates the use of WRF PBL
into the neural network approach.
Reasonable agreement can likely be
obtained for the other seasons if the sample
sizes were increased.

Table 2. Comparisons between CALIPSO and WRF derived PBL heights
(around CCNY)

Radius Winter Spring Summer Fall
R N R N R N R N

1.0 degree 0.37 75 0.41 24 0.63 49 0.44 35

As can be expected, the CALIPSO matchups are instructive in showing the seasonal
improvement of summer in comparison to other seasons. This is at least partly due to the
stronger aerosol layers making the CALIPSO measurements more accurate so this may not
give a complete performance of the WRF model alone. On the other hand, when matching
against the ground based lidar, even better
matchups are seen since the ground based
system is expected to better filter cases with
higher accuracy and work better with weaker
PBL aerosol layers (Fig. 9) [30].

Finally, we have made a multiyear analysis of
summer PBL heights from CALIPSO which
can be compared to existing climate model
PBL forecast models [31,32]. It is clear that
strong spatial correlations exist illustrating the
applicability of model based PBL height
directly into any PM2.5 estimator (Fig. 10).
Comparisons for other seasons are much less
accurate with significiant noise added to the
CALIPSO retreivals.

Fig. 9. CCNY lidar matchups against
WRF model for summer 2007.

Fig. 8. CALIPSO derived PBL height on August
8, 2007. Smoke plumes and high cirrus clouds

are also shown.
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Fig. 10. (a) Summer climate model PBL Heights (b) CALIPSO PBL height retrievals

4. REGIONAL NEURAL NETWORK RESULTS

From our previous results, we've seen the importance of including PBL information as well
as the seasonal factor in our neural network approach. Next, our regional experiment uses
MODIS AOD and WRF PBL daily data to estimate 24-hour in-situ PM2.5 measurements
which we compare against the performance from simple linear regressions, a neural network
using daily MODIS AOD alone, and the GEOS-CHEM estimated PM2.5. Unlike the MODIS
AOD daily averages, we only average the WRF PBL height data from 17:00 UTC to 20:00
UTC as a proxy for daily average since the WRF model performs poorly during night hours
and late afternoon PBL displays a better representation of the actual PBL behavior. In this
regional case, our neural network is mostly founded on collecting data from neighbor-
stations based on a distance radius from a choosen center station. Besides, we include the
month as a direct input since our local CCNY tests have confirmed the importance of adding
this information for fine PM predictions. It should be pointed out that we have applied the
GEOS-CHEM PM2.5 product quality flag keeping all points whose uncertainty is 20% of the
mean. The results are shown in Fig. 11. The main observations are the significant
improvements in the NN results with less cases of significant overestimation which appears
in the GOES-CHEM case. We do see bias in the NN case at high PM2.5 which may be due
to an unevenness in the frequency of high PM2.5 events and should be further explored. In
Fig. 12(a-e), we demonstrate the procedure on a wider spatial domain to illustrate that the
general procedures can be implemented on any scale. However, Fig. 12(f) is displayed on a
finer domain surrounding NY State to make the comparisons with the NY state AIRNow
stations (see Fig. 2) more visible.  More details are provided in section 4.1.

Fig. 11. Scatter plot showing the predicted output against in-situ ground station data
a) Operational GEOS_CHEM results. b) NN approach including month input.  The increased

correlation and the decrease in RMSE value show better performance for the NN estimations
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4.1 Implementing NN for PM2.5 Mapping

In order to estimate fine PM to conform to EPA standards, we use daily AOD retrievals
together with WRF PBL measurements to illustrate our neural network performance as a
spatial map. However, even in a “good” case, cloud cover can significantly reduce spatial
coverage. Therefore, we utilize a simple preprocessing approach where we merge low
resolution and high resolution data together with iterative inverse distance weighting.

In particular, we iteratively apply inverse distance weighted (IDW) averages of the data as
defined in (1), to improve spatial coverage while using a 0.1 degree radial domain.= ∑ ( )∑ ( ) , (1)

As an example, we plot the cascade of intermediate results and final product in Fig. 12. for
July 18, 2006. Fig. 12(a-b) show both the daily average AOD and the interpolated-spatial-
coverage daily average AOD. For consistency, we used the same IDW approach to improve
the spatial resolution in WRF PBL data although clearly data gaps are not an issue.
Resulting images are shown in Fig. 12(c-d).

(a) (b)

(c) (d)

(e) (f)
Fig. 12. (Left)Daily average and (Right) improved spatial coverage based on IDW for

July 18, 2006. (a-b) MODIS AOD daily average, (c-d) WRF PBL daily average,
(e-f) PM2.5 daily average estimations based on the neural network approach
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Fig. 12(e-f) show the regional PM2.5 map obtained from our neural network together with a
close up of the NY state region plus the station readings in that particulate date. We see a
good agreement between station and estimations data with low PM2.5 values observed in
the non-urban region while high fine PM values are observed in the metropolitan area.

Finally, for this day, Fig. 13 shows the scatter plot between ground measurements and
estimations at the corresponding stations available in this particulate date. In general, neural
network estimations are underestimated in comparison to site data; however, good
correlation and RMSE values are obtained for the specific date (R~0.79, RMSE~0.47).

Fig. 13. Fine PM comparisons between ground measurements and neural network
estimations on July 18, 2006

5. ASSESSMENT USING SATELLITE REMOTE SENSING VARIABLES

In the previous section we have demonstrated that underlying non-linear relationships
between the AOD and PM2.5 can be partially reconstructed by applying neural network
methods. In particular, the addition of PBL height and month inputs increased the
performance of the neural network.

In this section we focus entirely on satellite observations, and study their potential influence
on PM2.5 estimation. However, before we can start training the neural network, a careful
choice of variables should be made. One of the
ways would be to try a brute force search
method, where all the possible combination of
variables are fed into the neural network and
the relevant set of variables are decided
based upon the best correlated results
between the prediction and the observation
[33]. The brute force method is
computationally intensive, and can be
prohibitory for many variables case. Here, we
successfully reduced the number of inputs by
removing the correlated variables since the
presence of redundant information results in
unpretentious robustness during the testing
phase. Fig. 14 shows the correlation
coefficient between the candidate variables. In

Fig. 14. The correlation map between
21 satellite variables. We remove the
variables which are highly correlated

(r>0.5). See text for details.
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Fig. 15. Regression plot of satellite
multivariate NN.

particular, we eliminated variables with cross-correlation coefficient greater than 0.5. This
allowed us to significantly reduce the dimensionality of the input to the neural network. For
example, “Corrected Optical Depth Land” at different wavelengths are highly correlated with
each other and we could use one of them as the proxy.

Our initial regressor set started with the set of variables listed in Table 3 as possible
candidates. The selections were made based upon the availability, and distribution spread of
the variables. After removing the redundant variables (r>0.5), the number of variables were
significantly reduced, which is shown in Table 3 with hash tags (#).

Table 3. The set of input variables are shown. The variables with hashtags (#) are
selected for NN training after removing the correlated variables

Candidate satellite variables Wavelength (um)
Solar_Zenith# --
Solar_Azimuth# --
Sensor_Zenith# --
Sensor_Azimuth# --
Scattering_Angle# --
Optical_Depth_Land_And_Ocean# 0.55
Mean_Reflectance_Land_All 0.47
Mean_Reflectance_Land_All 0.66
Mean_Reflectance_Land_All# 2.1
Surface_Reflectance_Land 0.47
Surface_Reflectance_Land 0.66
Surface_Reflectance_Land 2.13
Corrected_Optical_Depth_Land 0.47
Corrected_Optical_Depth_Land 0.55
Corrected_Optical_Depth_Land 0.66
Corrected_Optical_Depth_Land_wav2p1 2.13
Optical_Depth_Small_Land 0.47
Optical_Depth_Small_Land 0.55
Optical_Depth_Small_Land 0.66
Optical_Depth_Small_Land 2.13
Mass_Concentration_Land --

With the seven input variables as the
regressors, we used the Bayesian regulation
backpropagation method with 20 hidden nodes.
Fig. 15 shows the result of the multivariate
neural network training with only the 7 satellite
variables taken as the input and the ground
station PM data as the target.

In particular, we find that the multivariate
satellite model using only the satellite remote
sensing input variables are found to have the
highest correlation with the target in
comparison to the other methods.  In fact, most
of the biases seen in the PBL method seem to
be diminished.
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This clearly motivates further investigation of infusing surface as well as PBL height
meteorological inputs. In addition, land surface classification is an important underlying
indicator [34-36], and needs to be included. This can theoretically be done either using a
modified vegetation index [37,38] or by direct land classification from USGS.

6. CONCLUSIONS

Our main focus was to demonstrate that regionally trained NN approaches are more
accurate with less bias that operational approaches which do not directly input regional
information. Before exploring the regional satellite based approach, we used combined
active/passive radiometer and lidar measurements to assess PM2.5 estimation. First, we
established that adding lidar derived PBL to total AOD is the most important “meteorological
factor” that must be accounted for which is particularly reasonable for urban conditions when
convective mixing is expected to be magnified. In addition, we also investigated the
importance of seasonality into the PM2.5-AOD relationship because PBL and other factors,
which affect physical and chemical properties of aerosol, also depend on seasons and found
that separate seasonal training can provide significant improvements. In addition, using the
month of the year as an additional training factor (‘regressor’) showed significant
improvement.

The success of the local experiments motivated a study of combining satellite AOD and
WRF PBL height which was methodically compared against GEOS-CHEM estimated PM2.5
where seasonal factors were integrated into the training. The results indicate that the
regionally trained NN performs significantly better with much less over-bias at low PM2.5
values. With this approach, we developed daily PM2.5 maps using high resolution AOD and
PBL grids for the region. Since the spatial coverage was still sparse, we applied an inverse
distance weighting (IDW) approach and obtained better spatial coverage. The resulting
maps are in good agreement with station data.

Finally, we also explored the potential of adding geometric and land surface satellite
variables as additional regressors to the neural network. This is reasonable since it is
generally understood that satellite AOD retrieval biases are connected to geometric and land
surface factors. The results show better correlation and even lower biases at high PM2.5.
Presently, it is quite remarkable that the satellite regressors when optimized seem to perform
better than the use of satellite AOD and WRF PBL. However, it should be pointed out that
the use of model PBL has significant issues such as inherent errors within the models as
well as the fact that only in convectively mixed systems is the aerosol well mixed and
trapped within the PBL. Still, additional research is in progress to include WRF PBL as well
as temperature and relative humidity in combination with the satellite regressors. Further
extensions to include neighboring states are also being investigated to improve the
robustness of the approach.
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APPENDIX 1

Table A.1 - New York state stations

City Latitude Longitude AQS Number DEM (m) Urban/non-urban
PS 274 40.69454 -73.92769 360470118 14 1
IS 293 40.68419 -73.99298 360470121 14 1
IS 74 40.81551 -73.88553 360050112 14 1
PS 154 40.80833 -73.92612 360050113 14 1
PS 314 40.64182 -74.01871 360470052 11 1
Manhattanville P.O. 40.81133 -73.95321 360610119 14 1
Maspeth 40.72698 -73.89313 360810120 14 1
PS 44 40.63137 -74.15732 360850114 11 1
IS 52 40.81620 -73.90200 360050110 14 1
White Plains 41.05192 -73.76366 361192004 108 0
Park Row 40.71160 -74.00540 360610125 10 1
Eisenhower Park 40.74316 -73.58549 360590005 33 0
IS 143 40.84888 -73.93059 360610115 40 1
Division Street 40.71436 -73.99518 360610134 14 1
Fresh Kills West 40.58027 -74.19832 360850111 14 1
Queens College 40.73614 -73.82153 360810124 20 1
CCNY 40.81976 -73.94825 360610135 14 1
PS 19 40.73000 -73.98446 360610128 14 1
Newburgh 41.49916 -74.00885 360710002 180 0
Albany County HD 42.64225 -73.75464 360010005 58 0
Buffalo 42.87691 -78.80981 360290005 198 0
East Syracuse 43.05235 -76.05921 360671015 140 0
Lackawanna 42.8273 -78.84984 360291007 75 0
Loudonville 42.68075 -73.75733 360010012 68 0
Niagara Falls 43.08218 -79.00106 360632008 173 0
Pinnacle 42.09142 -77.20978 361010003 444 0
Rochester 43.14618 -77.54817 360551007 323 0
Rockland County 41.18208 -74.02819 360870005 245 0
Tonawanda II 42.99813 -78.89926 360291014 181 0
Utica 43.09892 -75.22506 360652001 233 0
Westfield 42.29071 -79.58961 360130011 406 0
Whiteface Lodge 44.39308 -73.85890 360310003 613 0
Babylon 40.74529 -73.41919 361030002 34 0
Hempstead 40.63100 -73.73390 360590008 2 0
JHS 126 40.71961 -73.94771 360470122 14 1
JHS 45 40.79970 -73.93432 360610079 14 1
Mamaroneck 40.93149 -73.76575 361191002 18 0
Morrisania II 40.83606 -73.92009 360050080 40 1
NY Botanical Garden 40.86790 -73.87809 360050133 40 1
Port Richmond 40.63307 -74.13719 360850055 11 1
Susan Wagner 40.59664 -74.12525 360850067 11 1
_________________________________________________________________________
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