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ABSTRACT 
 

In present paper authors have used the theoretical model for calculation of value of 
different model parameters of potassium halides by using the effect of Many body (Puri 
and Verma, 1977) (Basic model for calculation and aurthor directley used the all 
calculated value of many body)  and compared by van der Waals three body force shell 
model. In presence of both the effects, better result came, which gave good agreement 
between theoratical and experimental result. Inclusion of van der Waals interactions 
(VWI) and three body interactions in the framework of a polarizable rigid shell model 
(RSM) gave FOEC (Forth order elastic constants), which is not possible to calculate 
only by many body effects. By using VTBFS model we can calculate all parameters like  
second and third order elastic constants (SOEC, TOEC and FOEC), pressure 
derivatives of first, second order and cauchy relation. So calculated result, compared 
well with the corresponding experimental results, which provided important theoratical 
formula to calculate all the property of alkali halides, earth alkaline metal and also for 
chalcoganides. So inclusion of [VTBFSM] interactions gave complete theoratical 
investigation for all type crystals.  
 

 
Keywords: Second, third and forth order elastic constants; pressure derivatives and Cauchy 

relation. 
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1. INTRODUCTION  
 
Many-body forces are short in nature, by the quantum-mechanical analysis Lowdin (1947) 
and Lundqvist (1935) led idea that they are long-range many–body potential. The effect of 
long range many body potential on the TOE constants do not study so. In particular, the 
third–order elastic constants are the cofficient of the cubic terms, Chang (1965) has 
experimentally determined the TOE constants of alkali halides. Naran’yan (1963) and Ghate 
(1965) have calculated the TOE constants, using the Born central –force model for which 
Cauchy relations (C112=C166 and C144 =C123 =C456) are satisfied at very low temperature (0 K). 
In the  present  paper authors have used van der Waals three body force shell model for 
calculation of the SOE, TOEC,  FOEC and pressure derivative of SOEC, which are giving 
better result that is closer to experimental values than the other used model. However in 
present model (VTBFSM) Cauchy discrepancy is smaller for TOE constants than for SOEC. 
In fact the present model (VTBFSM) has revealed much better description of dynamical 
properties of Potassium halides. The potential energy of the crystal Φ is given by Tolpygo 
(1961) and Φ0 is the crystal potential when the ions are all located at their equlibrium 
positions. 
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1.1 Many-Body Potential  
 
It is well known fact that during lattice vibration ions suffer an appreciable overlap and 
consequently their electron shells undergo deformation. This mechanism causes a transfer 
of charge between the overlapping adjacent ions. These transferred charges, in turn, interact 
via their associated Coulomb field with all other charges of the lattice and give rise to the 
long-range many-body interactions (MBI) (Lowdin, 1947; Lundqvist, 1952, 1955, 1957, 1961) 
whose most significant component is the three-body interaction (TBI). The origin of these 
(TBI) has been well established from the classical as well as quantum mechanical theories. 
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1.2 Present Model VTBFSM with VWI and TBI Effects  
 
The necessity of including the van der Waals interactions (VWI) and three-body interaction 
(TBI) effects in the framework of rigid shell model (RSM) (Woods et al., 1960, 1963, 1963) 
has, to give a detailed account of the essential formalism of the present lattice dynamical 
model VTBFSM. Thus, the inclusion of VWI and TBI effects in RSM will employ the Hietler-
London and the free-electron approximations. The interaction systems of the present model 
thus consist of the long-range screened Coulomb, VWI and three-body interactions and the 
short-range overlap repulsion operative up to the second-neighbor ions in potassium halides. 
Looking into the adequacy of this interaction system, the present models may hopefully be 
regarded as a successful approach for the dynamical descriptions of the potassium halides. 
The essential formalism and features of the present models have been discussed below. 
 

2. THEORETICAL FORMALISM OF VTBFSM 
 
The general theoretical formalism of VTBFSM can be derived from the crystal potential 
whose relevant expression per unit cell is given by 
 

Φ = ΦC
+ΦR

+ΦTBI
+ΦVWI  

(1) 
where, the potential energy terms on the right hand side are being expressed as follows: 

 

(i) First term ΦC
 is Coulomb interaction potential. This interaction potential is long-range in  

nature. An ionic crystal can be regarded as made up of positive and negative ions separated 

by a distance ijr
r

, where ijr
r

is a vector joining the ions i and j. According to electrostatic 

theory, the Coulomb energy of interaction of i-th ion with j-th ion is written as ΦC
( ijr
r

). Thus, 

total Coulomb energy for the crystal is 
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    where, the prime means summation over all ions except i=j, εij will be +1, if i and j are like     
    ions and –1, if they are unlike. If we consider infinite lattice, the Coulomb potential energy      
    for the whole crystal is given as  

                 

0
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r

eZ
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    where, αm is the Modelung constant whose value for NaCl-type lattice is –1.7476 and r0 is  
 
    the equilibrium nearest neighbor distance. 
 

  (ii) Second term ΦR
 is short-range overlap repulsion potential. In order to prevent the lattice 

from collapsing under the Coulomb attraction, there must be the overlap repulsion between 
the ions. These forces have quantum mechanical origin and arise when further overlap 
between neighboring ions is restricted by the Pauli Exclusion Principle. The repulsive energy 
is not so well understood as the Coulomb attraction. The most commonly used analytical 
expressions for the repulsive energy are given by the inverse and exponential power laws 
such that 
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( ) n
ijij

R arr =Φ  (Born Potential)        (4) 

( ) )/.(exp ρijij
R rbr −=Φ  (B-M) Potential)        (5) 

 

where, a(or b) and η(or ρ) are the Born exponents called the strength and hardness 
parameters, respectively. It is clear from the above expressions that the evaluations of lattice 
energy require the determination of just two repulsive parameters if the total repulsive 
energy is contributed by the nearest neighbors only. In order to take explicit account of the 
B-M repulsion of the second-neighbors in the ionic crystal, a plausible extension of the 
expression (4) to the second-neighbor yields the repulsive energy (Born and Mayer, 1932; 
Fumi and Tosi, 1964). 
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where M and M' are the number of first and second-neighbors and r' is the distance between  

the second neighbors βij . 
 

( ) ( )jjiiij nZnZ //1 ++=β     (7)  

 
with Zi and ni as the valence and the number of outer electrons of the i-th ion, r+ and r- are 
the ionic radii of the positive and negative ions. The strength parameter (b) and the hardness 

parameter (ρ) in a family of salts can be determined from the equation of state and the 
volume derivatives of the lattice energy as indicated earlier. Thus, the expression (6) can be 
used to represent the repulsive energy   up to the second neighbor without increasing the 

parameter in addition to b and ρ. 
 

(iii) Third term ΦTBI
 is three-body interactions potential. According to quantum-mechanical 

theory using Heitler-London approximation (Heitler and London, 1927), the atomic wave-
functions are treated rigidly connected with their nuclei and supposed not to change in a 
deformation of the lattices. This does not mean that the electron-charge density is sum of 
charge densities for a system of free-ions. The reason for this lies in the fact that when the 
ions are put in a lattice their electron wave function overlaps and get deformed. These 
effects lead to the non-orthogonality of the one electron wave function. This non-
orthogonality causes the charge distribution to differ from the sum of the densities for free 
ions, the differences being more pronounced in the regions where the overlap between the 
atomic wave-functions in large. As a natural consequence of the anti-symmetry requirement 
on the wave function (Heitler and London, 1927), this alteration in the electronic charge 
density causes a charge depletion which depends on the inter nuclear separation and 
interacts with all other charges via Coulomb force law and gives rise to long-range TBI 
introduced by Lowdin (1947) and Lundqvist (1935). This interaction potential is expressed as 
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where, the term f(r)0 is a function dependent on the overlap integrals of the electron wave-
functions and the subscript zero on the bracket indicates the equilibrium value of the 

quantities  inside. ΦTBI
 is also long-range in nature hence it is added to the ΦC

. 
 

(iv) Fourth term of eqn. (1) ΦVWI and is ver der Waals interactions potential. The nature of 
this interaction is different and owes its origin to the correlations of the electro motions in 
different atoms. Using the crystal energy expression (1) the equations of motion of two cores 
and two shells can be written as 
 

ω2
M U = (R + Zm C' Zm) U + (T + Zm C' Ym) W        (9) 

O = (T
T
 + Ym C' Zm) U + (S + K + Ym C' Ym) W      (10) 

 
following the usual procedure (Woods et al., 1960, 1963, 1963). Here U and W are vectors 
describing the ionic displacements and deformations, respectively. Zm and Ym are diagonal 
matrices of modified ionic charges and shell charges, respectively. The elements of matrix 
Zm consists of the parameter Zm giving the modified Ionic charge. 
 

     
(11) 

 
       
 
The elimination of W from eqns. (9) and (10) leads to the secular determinant: 

( ) 02 =− IMqD ω
r

      (12)  

 for the frequency determination. Here D (q) is the (6×6) dynamical matrix given by 
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(13)   

 
The dynamical matrix, given by eqn. (12), is a matrix (6×6) leading to six Vibrational 

frequencies (ωj) corresponding each phonon wave vector ( )q
r . For wave-vector ( )q

r  along 

the principal symmetry directions ( )qDand
rrrr

,, Λ∑∆  can be reduced to lower order (2×2) 

matrices which simplify the computational work in solving the characteristic eqn. (12) and 
also the number of distinct branches of the dispersion relations get reduced because of the 
degeneracy’s. 
 
In view of the above mentioned advantages, let us write the secular eqn. (14) to the reduced 
order (2×2) determinant: 
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Here, m1 and m2 are the masses of positive and negative ions, respectively. The elements of 
the dynamical matrix have been derived and obtained as: 
 
 

  Zm = Zξ = ± Z√1+(12/Z)f0 
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where, R1, R2, R3, represent the elements of the short-range force matrices. Here, C'1 and 
C'2 are the long-range coupling coefficients between like and unlike ions. 
 
The modified expressions for the electrical and mechanical polarizabilities are defined by the 
following relations: 
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The general comparison of the dynamical matrix elements given by the eqn. (15) to (17) 
shows that besides several modifications introduced in various quantities, there appears a 
completely new term (underlined) in the expression for D(12). This term gives significant 
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contribution to the dynamical matrix when shell charge parameters are treated unequal. This 
inequality represents most realistic situation of the ions in crystals. 
 
The final expressions for SOE , TOE and FOE constants of the NaCl –type crystals derived 
for elastic constants corresponding to VTBFSM are obtained as: 
 
The expressions  
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In view of the equilibrium condition [(dΦ/dr)0=0] we obtain 
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The term f0 is a function dependent on the overlap integrals of the electron wave functions 
and the subscript zero indicates the equilibrium value. 
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The short-range force parameters (Ai, Bi, Ci and Di; i=1, 2) involved in our expressions is 
defined as: 
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Cauchy relations break down both for the SOE constants and for the TOE constants in the 
presence of three-body interactions even at 0 K. If we put the function f and its derivatives 
equal to zero, the Cauchy relations are satisfied.  

 

2.1 Pressure Derivatives for Rock Salt structure 
 
When a cubic crystal is subjected to hydrostatic pressure, the symmetry of the crystal is 
preserved. Hence the pressure derivatives  of the SOE and TOE constants are given in 
terms of the parameters A,B,C,f(r0),r0f’and f” we get as: 
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We can calculate similarly for other derivative by changing the constant term of C. 
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The theoretical calculation of many body model is reported by Smith (1975) and Haussuhl 
(1960) in Table 1 and by using our model VTBFSM. The input data are reported in Table 2. 
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             (42) 
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3. RESULTS AND DISCUSSION 
 
The parameters A, B, f(r0), r0 f0′ have been evaluated by use of many body model and 
parameters C can be evaluated by approximating the overlapped repulsive potential. The 
others calculated values of the pressure derivative, SOE constants can easily be calculated. 
The input data are given in Table-1. Naran’yan (1963) and Ghate (1965) have deduced the 
expression for TOE constants from the central Born–Mayer potential, for which the Cauchy 
relations are satisfied at very low temperature (0 K). The Cauchy relations are failure at a 
finite temperature T in use of the vibrational energy. In the present study Cauchy relations 
failure occurred due to many bodies. By VTBFSM calculated values of the FOEC and TOE 
constants, pressure derivatives of the SOE and TOE constants agree fairly with the 
experimental values, as compared to theoretical values of Ghate (1965) and Naran’yan 
(1963) as a matter of fact, the agreement between our values and the experimental ones in 

case of KCl is excellent. The values of dK′/dP, dC′44/dP and dS′/dP are invariable positive, 
depending on the crystal structure. It is true that agreement between the theoretical and 

experimental values of dK′/dP and dC′44/dP, our calculated values should show some 
deviations from the room –temperature with experimental results.  
 

Table 1: Input data for KF, KCl, KBr and KI in Cij (in 10
11

 dyn/cm
2
), ro(in 10

-8
 cm), 

TOEC(in units 10
12

 dyn/ Cm
2
) and Pressure derivatives of dS′′′′/dP, SOEC and TOEC 

(dimensionless) 
 

Property 
KF KCl KBr KI 

Present Present Present Present 

C11 6.185
 

3.838 3.263 2.577 

C12 1.440 0.683 0.564 0.445 

C44 1.250 0.633 0.504 0.370 

ro 2.674 3.146 3.300 3.533 
f0 -0.0169 -0.0189 -0.0212 0.0234 

r0 f0′ 0.0180 0.0009 0.0013 0.0021 

A 9.7238 10.386 10.395 10.4348 

B –0.928 –0.9005 –0.8680 –0.8371 

C –101.880 –119.789 –124.499 –130.065 

C111 -10.6856 -7.0615 -6.0266 -5.0020 

C112 -0.2164 -0.1753 -0.0977 -0.1288 

C123 0.2101 0.1325 0.1092 0.0856 

C144 0.2328 0.1266 0.1020 0.0767 

C166 -0.4459 -0.2171 -0.1716 -0.1242 

C456 0.2441 0.1236 0.0984 0.0723 

dC′44/dP -0.411 -0.530 -0.565 -0.611 

dK′/dP 4.252 5.028 4.854 5.387 

dS′/dP 5.25(18) 561(18) 5.68(18) 6.03(18) 

*Puri & Verma (1977)                                                   
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By Using VTBFS Model 
 
Table 2: Input data for KF, KCl, KBr and KI Cij (in 10

11
 dyn/cm

2
), ro(in 10

-8
 cm), TOEC 

and FOEC (in units 10
12

 dyn / Cm
2
) and Pressure derivatives of dS′′′′/dP, SOEC and 

TOEC (dimensionless) 
 

Property KF KCl KBr KI 

Present Present Present Present 

C11 7.570 4.832 4.832 3.380 

C12 1.350 0.542
b
 0.560 0.220 

C44 1.336 0.663 0.520 0.368 

ro 2.648 3.117 3.278 3.492 

f0 –0.0144 –0.0129 –0.0139 –0.0084 

r0 f0′ –0.0128 –0.0212 –0.0443 –0.0409 

A 11.6719 14.1470 13.3905 20.6045 

B –0.7319 –2.6346 –3.0275 –3.7923 

C –1.3303 –0.4289 1.3649 –1.6938 

C111 –10.813 –7.596 –6.180 –5.339 

C112 –0.249 –0.254 –0.135 –0.336 

C123 0.265 0.118 0.074 0.058 

C144 0.264 0.132 0.131 0.076 

C166 –0.475 –0.237 –0.107 –0.124 

C456 0.263 0.140 0.113 0.085 

C1111 2.191 1.590 1.929 1.884 

C1112 –0.425 –0.338 0.495 2.534 

C1166 –0.448 0.102 0.629 0.984 

C1122 0.003 1.074 0.961 –1.046 

C1266 0.005 0.007 1.010 0.482 

C4444 0.470 1.389 0.942 1.503 

C1123 –0.617 –0.179 –0.213 0.350 

C1144 –0.611 –0.230 –0.303 0.288 

C1244 0.615 –0.316 –0.244 –0.185 
C1456 –0.612 –0.341 –0.288 –0.215 

dC′44/dP –0.385 –0.501 –0.519 –0.610 

dK′/dP 4.205 5.428 4.874 5.087 

dS′/dP 4.846 5.786 7.222 5.571 

dC′111/dP 38.842 –37.761 –88.070 30.765 

dC′112/dP 0.970 –1.223 –1.164 0.075 

dC′166/dP 1.222 0.956 0.984 1.055 

dC′123/dP 1.102 1.031 1.081 0.678 

dC′144/dP –0.897 –0.921 23.216 –1.038 

dC′456/dP 0.982 0.986 0.990 0.989 
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4. CONCLUSION 
 
From the above discussion we can fairly conclude that by use of many body models we 
cannot calculate the value of higher order of pressure derivative and forth order elastic 
constant and we cannot predict any result for it but by using the present model VTBFSM we 
can calculate all the values of parameters which is more accurate to experimental values. So 
by use of present model we can successfully calculate all parameters and complete 
information for alkali halide crystal. Present model used by different researchers to calculate 
various property of alkali halide (Srivastava et al., 2004, 2005, 2010, 2011).  In the present 
paper by inclusion of van der Waal model we can calculate third order, forth order elastic 
constant, pressure derivatives for higher order and Cauchy relation that was possible only 
through experimentally but by use of this model we can calculate all parameter  for alkali 
halides that give good agreement with experimentally calculated value. So this model plays 
very important role for theoretical researcher to find out the all calculated value of halides 
crystal.   
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