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Abstract
We expand the recent work on clustering of synthetic routes and train a deep learning model to
predict the distances between arbitrary routes. The model is based on a long short-term memory
representation of a synthetic route and is trained as a twin network to reproduce the tree edit
distance (TED) between two routes. The machine learning approach is approximately two orders
of magnitude faster than the TED approach and enables clustering many more routes from a
retrosynthesis route prediction. The clusters have a high degree of similarity to the clusters given by
the TED-based approach and are accordingly intuitive and explainable. We provide the developed
model as open-source.

1. Introduction

Machine learning (ML) and deep learning have propelled the research on computer-aided synthesis planning
(CASP) in the last decade (see [1] for a recent review). CASP is becoming an integral part of drug
development where models can be used to for instance predict reaction conditions or how to synthesize
molecules. Retrosynthetic analysis is a technique used to find a synthetic route for a compound, in which the
compound is broken down into smaller and smaller precursors until those precursors are purchasable or it is
already known how to synthesize them [2, 3]. This can be formalized in a computer program, and today
there exist many such algorithms (see e.g. [4–10]) and software [1] to do this. Searching for synthetic routes
requires an effective search algorithm as there are typically many ways to break down a compound into
smaller building blocks. A search algorithm should not only return the synthetic route that is most likely to
succeed, but additionally a set of diverse routes that a chemist can analyze further if the top-ranked route is
not adequate. The pruning of the identified routes to create a diverse set of routes can be done as part of the
search algorithm itself [11] or as a post-processing step [12].

Recently, a clustering algorithm for predicted synthetic routes that is based on a tree edit distance (TED)
calculation [13] (see figure 1 for an overview) was proposed. This is a graph theoretical metric [14, 15] of the
distance between two synthetic routes that recursively utilizes chemical similarity matching. It was concluded
that the TED approach produced intuitive clusters that could be easily rationalized by inspecting the reactions
and molecules of the routes. Thus, the TED-based clustering approach can be used as a post-processing step
to group together the results of a retrosynthetic analysis in order to aid the chemists in the analysis of the
proposed routes. This algorithm could also be used to identify patent-evading routes, compare predicted
routes to reported experimental routes of the same compound, or to cluster different compounds based on
the similarity of their synthetic routes. Although the TED calculations produce intuitive and explainable
clusters, the method is unfortunately sometimes slow and does not scale to larger sets of routes [13].

Therefore, we decided to develop a ML model that is capable of predicting the distance between two
arbitrary synthetic routes. This model is similar in design to the one developed by Mo et al to distinguish
between predicted and experimental routes [12]. Although their model can be used to cluster synthetic
routes, some non-intuitive behavior of the model was observed, which was believed to be due to the training
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Figure 1. Overview of methods to cluster synthetic routes from a retrosynthesis analysis. The distance calculation underlying the
clustering can be performed exactly but slowly using a TED calculation, or approximately but fast using an ML-model.

objective of the model. The model of Mo et al was never trained for the distance calculation task, thus it is
not guaranteed to perform well on this task. The latent space representation of the synthetic route i.e.
calculated by the model is simply a by-product of the training task. On the other hand, the TED-based
approach leads to qualitative good clusters [13] and can therefore serve as the ground truth for the training
of an ML model. We used a model inspired by the model of Mo et al, however we trained it to reproduce the
TED calculations. The ML model serves as a proxy model for the expensive TED calculations. Our aim is
therefore to investigate if we can develop a fast model that also leads to intuitive and explainable clusters (see
figure 1). We will focus on the agreement between the TED and ML-approaches, and assume that if the ML
approach recovers the TED-based clusters, the ML approach also provides intuitive and explainable clusters.

2. Methods

2.1. Compound selection and preparation
We used a set of 5000 compounds from ChEMBL [16], described and used previously for benchmarking the
TED-based clustering [13]. This set will be referred to as ChEMBL-5k. We also created a new set by randomly
sampling 10 000 single molecule compounds from ChEMBL that has a molecular weight between 100 and
800 D, a QED [17] score above 0.2 and is not part of the ChEMBL-5k set. The tautomeric form of the
compounds was determined by RDKit [18]. This set will be referred to as ChEMBL-10k. Finally we also
randomly sampled 10 000 compounds from the GDB ChEMBL and 10 000 compounds from the GDB
MedChem datasets [19, 20]. The structures provided by these sets were used without further processing.
These sets will be referred to as GDB-ChEMBL and GDB-MedChem, respectively.

2.2. Route predictions and TED calculations
The compounds in the four different sets were subjected to retrosynthesis predictions with the AiZynthFinder
software [21]. The expansion and filter policies used by the software were derived from the USPTO dataset
[22, 23], unless otherwise stated. Enamine building blocks and those available internally at AstraZeneca were
used as stop criteria. The retrosynthesis search was stopped after 100 iterations, and between 5 and 25 routes
were extracted, depending on the search score. For each target compound, the pairwise distance matrix of the
predicted routes was calculated using a TED algorithm, as detailed previously [13].

2.3. MLmodel
We designed a ML model to represent a synthetic route that is based on a child-sum tree LSTM (long
short-term memory) neural network model [24–26]. On each molecular node in the route we position an
LSTM cell, which takes input from children nodes (i.e. precursor molecules) as well as a feature
representation of the molecule. In the forward pass of the model, the latent representation of the LSTM cells
are updated iteratively until the top-node (the target molecule) is reached. The feature representation of a
molecule is calculated by a simple feed-forward network that takes as input a 2048 bit fingerprint (ECFP4
[27], computed by the Morgan algorithm in RDKit [18]) of the molecule. A representation of the complete
network architecture is shown in figure 2. This model is similar to the model proposed by Mo et al [12],
although we do not consider reaction fingerprints and we use a different activation function in the
feed-forward network.

2.4. MLmodel training
We trained a twin network [28] based on the LSTM-model described above on the TED routes. Given a pair
of routes, the 1st route is fed through the LSTM-model giving the latent representation of the top-node,
followed by the feeding of the 2nd route, also giving a latent representation of the top-node (see figure 2).
The Euclidean distance between these two latent vectors should reproduce the TED results. We used a mean
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Figure 2. Illustration of the ML model. (A) A synthetic route consisting of two reactions and five molecules. (B) The conceptual
representation of the route by a LSTM network. A LSTM cell is placed on top of each molecule, which takes input from the
children nodes as well as a processed fingerprint of the molecule. (C) The architecture of the compression feed-forward that takes
a fingerprint (with length FP size) as input and produces a shortened feature representation of the molecule (with length LSTM
size). (D) The architecture of the twin network that is used to predicted distances between routes. For each route, the molecular
fingerprints are fed through the compression network and the output representation is fed together with an adjacency matrix to a
tree LSTM network. The adjacency matrix determines the node order in the iterative procedure that updates the LSTM cells. The
LSTM encodings of the top nodes from the two routes are then used to compute an Euclidean distance.

Table 1. The total number of routes and pairs in the different sets used to train the LSTMmodel.

Compound set Pair permutations # routes # pairs

ChEMBL-10k Single 104 120 751 666
ChEMBL-10k All 104 120 1399 212
ChEMBL-5k Single 51 694 371 175
ChEMBL-5k All 51 694 690 656

squared error-loss function together with the mean absolute error (MAE) metric to monitor the training.
The Adam optimizer [29] was used with a learning rate of 0.001 and a weight decay factor of 0.001 [30]. The
learning rate was decreased after a relative plateau of 10−4 of the loss was observed after ten epochs. The
dropout probability for the feed-forward network was 0.4 and the size of the LSTM latent space was 1024. We
trained in batches of 128 samples for 50 epochs. Limited hyperparameter optimization was carried out with
the Optuna package [31], but because the optimization is expensive and because good performance was
obtained with the above parameters, we did not attempt to fine-tune them further. The model was
implemented in PyTorch [32] using the PyTorch Lightning framework [33].

The dataset consists of pairs of routes (Ti, Tj) and the calculated TED. Either both permutations of the
pairs were included (i < j, i= j, i > j) or we only included one permutation of the pair (i⩽ j). The dataset was
split into approximately 80% for training, 10% for validation and 10% for testing, respectively. Care was
taken so that a route is not in more than one set: we iteratively selected all pairs of routes for a random
compound until we had a training set consisting of at least 80% of the total set of pairs. This procedure was
repeated until we had selected at least 10% of the total set of pairs for validation and finally, the
approximately 10% of pairs left were taken as the test set. As all pairs of routes originate from the same target
compound, this ensures that a route is not in more than one set. Models were trained on routes generated for
the ChEMBL-5k or ChEMBL-10k compound sets. The number of routes and number of pairs in the different
sets is shown in table 1.

2.5. Clustering
Clustering was carried out based on the distance matrix from either TED calculations or the predictions of
the ML model. We used hierarchical clustering with single linkage as implemented in SciKit-Learn [34], and
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Figure 3. Average validation loss, MAE, and R over three independent modeling runs for ChEMBL-5k and ChEMBL-10k datasets
(single pair permutation). The grey area indicate an error bar of one standard deviation. The averages and standard deviations at
the final epoch are listed in table S1.

the optimal number of clusters was determined by the Silhouette method [35]. The maximum number of
clusters was set to five, because the number of analyzed routes were small in order to enable comparison
between the ML and TED approaches.

3. Results and discussion

3.1. TheMLmodel learns quickly
We trained an ML model to reproduce TEDs using mainly two different datasets: single permutation of pairs
for ChEMBL-5k compounds, and single permutation of pairs for ChEMBL-10k compounds. The total
number of routes and pairs is listed in table 1. The average of the loss, the MAE, and Rmetrics over three
independent training runs are shown in figure 3. All metrics converge after about 30 epochs, and there seems
to be only a small variation between the different training runs. Therefore, we proceed with using the models
produced from the first training runs when evaluating them further below. In table S1 (available online at
stacks.iop.org/MLST/3/015018/mmedia), we compare the MAE and R when using a single permutation of
the pairs to using all permutations of the pairs. For both MAE and R, the models trained on all pairs perform
slightly worse than the models trained on only single permutations, although it is unclear if the differences
are significant due to the low number of independent training runs. Therefore, we continued evaluation on
the models trained on single pair permutations, because we can speed up the training time by only including
about half the number of pairs. As the twin network share weights for the two LSTMmodels and because the
Euclidean distance calculation is commutative, it should not matter which route is passed first through the
network, which furthers motivated us to continue with the single-permutation training sets. Finally, there
appears to be no significant difference in performance when comparing the ChEMBL-5k and ChEMBL-10k
models.

3.2. ML-based clustering is significantly faster than TED-based clustering
The ML model trained on the ChEMBL-10k dataset (single pair permutation) was used to predict distances
between routes for the ChEMBL-5k, GDB-MedChem, and GDB-ChEMBL compound sets. For the
ChEMBL-10k compound sets, the model trained on the ChEMBL-5k dataset was used. The foremost reason
to develop a proxy model such as the ML model is that the TED calculations were observed to be too slow in
the worst case and did not scale well. Therefore, it is of interest to compare the timings of the two
approaches. The mean and worst clustering time (distance+ clustering calculations) is shown in table 2. If
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Table 2. Timings in seconds for TED- and ML-based clustering for four datasets.

TED ML

Mean # pairs Mean time Worst time Mean time Worst time

ChEMBL-5k 63.90 6.45 213.95 0.05 0.70
ChEMBL-10k 64.75 5.54 211.89 0.05 1.41
GDB-MedChem 50.76 6.71 156.83 0.06 2.24
GDB-ChEMBL 52.97 6.82 157.30 0.06 2.16
ChEMBL-5k (100
routes)

4770.86 377.03 4215.92 0.72 5.62

ChEMBL-5k (all
solved routes)

1217.81 72.62 3806.78 0.20 4.65

Table 3.Metrics show the similarity of distances and clusters when comparing the TED and ML approaches for various datasets. The ML
model was trained on the ChEMBL-10k or ChEMBL-5k sets.

Distance Cluster

Compound set Expansion policy R MAE Mean similarity Median similarity

ChEMBL-5k USPTO 0.95 0.92 0.88 0.97
ChEMBL-10k USPTO 0.95 1.03 0.87 0.95
GDB-MedChem USPTO 0.92 1.66 0.87 0.96
GDB-ChEMBL USPTO 0.92 1.61 0.87 0.95
GDB-MedChem Reaxys 0.92 1.55 0.88 1.00
GDB-ChEMBL Reaxys 0.92 1.53 0.88 1.00

we only look at the cases where we extract a small number of routes (1st four rows), the mean time for TED
calculation is between approximately 6 and 7 s, compared to 0.1 for the ML approach. The worst time is
between 157 and 214 s for the TED approach and only between 0.7 and 2 s for the ML approach. This shows
that both on average and in worst-case scenario the ML approach is more than an order of magnitude faster
than the TED calculations, and potentially two orders faster. If we instead extract 100 routes for each
compound, we see that the speed-up is even more impressive. The mean and worst time is only 0.7 and 6 s,
respectively for the ML method, which is negligible compared to the search time. In addition to extracting
100 routes, we also extract all solved routes for compounds where a solution could be found, and between 5
and 25 routes for compounds where a solution could not be found. These timings are shown in table 2 as
well, and we can conclude that the average and worst clustering time is acceptable for this scenario as well.
Therefore, we can conclude that we have successfully created a faster proxy model.

3.3. ML-based clustering recovers the TED clusters to a large extent
In table 3 we show the MAE and correlation coefficient, R when comparing the TED with the distances
predicted by the ML model. For the ChEMBL-5k set, R is 0.95 and the MAE is 1 distance unit, which shows
that there is a strong correlation and only a small deviation. This can also be seen in figure 4; there are a few
distances that are considerably different, especially distances where the ML predictions is much lower than
the TED. We see similar R and MAE if we compare the distances for the routes of the ChEMBL-10k set,
showing that a model trained a smaller dataset (Chembl-5k) is as good as training on a larger dataset
(Chembl-10k). Having such a good prediction of distances, it is not surprising that the clustering
performance is good as well. The mean similarity is between 0.87 and 0.88, with the median being between
0.95 and 0.97. This shows that most of the routes that are clustered together with TED are also clustered
together with the ML approach. We can thus conclude that the ML approach at least on average produces
satisfactory clusters. In the supporting information, we investigate the differences between the TED and ML
approaches for different subsets of the data (see tables S2 and S3). This analysis show that the discrepancy
between the approaches will be larger when the routes to compare contains more reactions and if the routes
are converged. However, the cluster similarity is expected to be reasonably consistent.

3.4. MLmodel for route distances and clustering is transferable
We included compounds from GDB-MedChem and GDB-ChEMBL in the study to investigate the
transferability power of the model. The GDB database contains enumerated compounds that in general are
harder to break down with the AiZynthFinder tool (see table S4). This shows that the compounds in GDB
contain chemistry that is not well-represented in the USPTO dataset, on which the expansion policy was
trained. And even if one of the GDB sets were created to be similar to ChEMBL compounds [20], the
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Figure 4. Performance of the ML model trained on the ChEMBL-10k dataset and applied on routes for ChEMBL-5k compounds.
(a) Correlation between TED and ML prediction of distances. The scatterplot is a random subset of 1% of all the pairwise
distances whereas the solid line show a linear regression line for all the data. The correlation coefficient, R, for this regression line
is 0.95. (b) The distribution of cluster similarities for all compounds. The average and median for this distribution is listed in
table 3.

compounds in this set are clearly much harder to break down than the compounds ChEMBL-10k and
ChEMBL-5k sets, indicating that the compounds are different at least from a synthesizability perspective.
However, as we see in table 3 the performance of the ML approach on the GDB sets is very satisfactory. The
correlation coefficient is slightly weaker than for the ChEMBL sets, and the MAE points at a larger
discrepancy. Still, the mean and median cluster similarities for the GDB sets are on a par with the similarities
seen for the ChEMBL sets, showing that the clustering algorithm is robust to distance discrepancies. This
finding can be understood by the fact that we use the same approach to generate routes for ChEMBL and
GDB compounds, which would lead to the same type of reaction chemistry being encoded in the routes.
Thus the relation between molecules in the route is not inherently different when comparing ChEMBL and
GDB routes, and therefore the ML model can successfully transfer the knowledge from routes for ChEMBL
compounds to routes for GDB compounds. We also predicted routes for the GDB sets using an expansion
policy trained on the Reaxys database [22, 36], and we can see in table S4 that this expansion policy is more
successful than the USPTO-based expansion policy in finding routes for the GDB compounds. We still
reproduce the TED calculations when we predict route distances and clusters using the ML model trained in
ChEMBL-10k: as seen in table 3, the R and MAE when comparing the distances are 0.92 and approximately
1.5, respectively, and the mean cluster similarity is 0.88 for both GDB sets. Thus, we can be relatively certain
that the trained ML model is predictive even if one changes the expansion policy or have compounds that are
not ChEMBL-like.

3.5. Large clustering differences between TED-based andML-based clustering can be rationalized
We investigate the difference in clustering further by inspecting the distances and clusters for the compound
where the cluster similarity was the lowest (0.28) when analyzing the Chembl-5k set. For this compound, the
optimal number of clusters according to the Silhouette method for the TED matrix is 5, whereas for the
latent space distance matrix it is 2. Representative routes for each cluster is shown in figure S1. The difference
in the number of clusters can be understood from the dendrograms of the two distance matrices shown in
figure 5. For the ML predictions, route number 4 is so distant from the other routes that it is placed into a
singleton cluster, and all the other routes in a second cluster. For the TED approach, the distances are more
evenly distributed and it is therefore more preferential to form more clusters. Still, the routes clustered first in
the hierarchical clustering would be very similar for the two approaches. For instance, routes 0 and 1 would
be clustered early and then joined with route 3 in both TED- and ML-based clustering. Similarly, the cluster
consisting of routes 5 and 9 would be joined with the cluster formed from routes 6 and 10. That route 4 is
different to the other routes can be rationalized by realizing that this route is the only one that ends with a
dehydration reaction (see figures 6 and S1). So the ML model single out this feature much more than the
TED approach. TED clustering places route 4 closer to routes 0–3, which are single-step routes similar to the
1st step of route 4. This analysis highlights that the TED and ML approaches sometimes focus on different
chemistry in the analyzed routes. Similar analyses for two other compounds are shown in figures S2 and S3,
concluding that the two approaches sometimes give different clusters but the clusters can for both approach
be rationalized. It should be pointed out the optimal number of clusters has a subjective element to it, so that
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Figure 5. Dendrograms formed from distances matrixes from (a) TED calculations, (b) ML predictions when performing
hierarchical clustering. The routes are for the target compound where the cluster agreement between the TED and ML approaches
is lowest as discussed in the main text.

Figure 6. Route number 4 from the dendrograms in figure 5. It is the only route ending with a dehydration reaction.

the two methods gives different number of clusters is not inherently wrong. For 58% of the compounds in
the Chembl-5k set, the optimal number of clusters according to the Silhouette method is equal when
comparing the TED and ML approaches, for 24% of the compounds the ML approach leads to more clusters
and in 19% the TED approach leads to more clusters.

4. Conclusions

A novel method to rapidly compute the similarity between synthetic routes has been developed and can be
used to, e.g. cluster results from a retrosynthesis analysis, cluster compounds based on route similarity,
compare predicted and experimentally reported routes, or in the comparison of synthesis planning tools. It
would also be of interest to investigate if it could be utilized directly in the Monte Carlo tree search to guide
the search into novel areas of the search space. We showed that the novel method can reproduce the synthetic
route clustering based on TEDs. Because the cluster similarity between the ML and TED approaches is high,
the ML model will provide chemists with intuitive and useful clusters. Furthermore, we showed that the
novel method is fast: on average the predictions take less than one second and in the worst-case a few
seconds, which is negligible compared to the route prediction time. Finally, we also showed that the trained
ML model is transferable: is robust to changes in targeted chemical space and the expansion policy used in
the retrosynthesis analysis. We thus envisage that the novel method presented herein will be useful in
synthesis planning. The developed method is provided as open-source and is available in the AiZynthFinder
software [21].
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Data availability statement

The code for AiZynthFinder is available: https://github.com/MolecularAI/aizynthfinder and the code for the
route distance calculations: https://github.com/MolecularAI/route-distances.

The data that support the findings of this study are openly available at the following URL/DOI:
https://zenodo.org/record/4925903.
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