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Abstract
Wear faults are among the chief causes of main-engine damage, significantly influencing the 
secure and economical operation of ships. It is difficult for engineers to utilize multi-source 
information to identify wear modes, so an intelligent wear mode identification model needs to 
be developed to assist engineers in diagnosing wear faults in diesel engines. For this purpose, 
a multi-level belief rule base (BBRB) system is proposed in this paper. The BBRB system 
consists of two-level belief rule bases, and the 2D and 3D characteristics of wear particles 
are used as antecedent attributes on each level. Quantitative and qualitative wear information 
with uncertainties can be processed simultaneously by the BBRB system. In order to enhance 
the efficiency of the BBRB, the silhouette value is adopted to determine referential points 
and the fuzzy c-means clustering algorithm is used to transform input wear information into 
belief degrees. In addition, the initial parameters of the BBRB system are constructed on the 
basis of expert-domain knowledge and then optimized by the genetic algorithm to ensure 
the robustness of the system. To verify the validity of the BBRB system, experimental data 
acquired from real-world diesel engines are analyzed. Five-fold cross-validation is conducted 
on the experimental data and the BBRB is compared with the other four models in the cross-
validation. In addition, a verification dataset containing different wear particles is used to 
highlight the effectiveness of the BBRB system in wear mode identification. The verification 
results demonstrate that the proposed BBRB is effective and efficient for wear mode 
identification with better performance and stability than competing systems.
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1.  Introduction

The marine diesel engine is the main power source in almost 
99% of ships all over the world [1], and therefore, its reli-
ability is extremely crucial for the safe and economical opera-
tion of ships. As reported in Main Engine Damage, a study 
published by The Swedish Club [2], main-engine damage 
contributed to 34.3% of the total marine machinery claims in 
2012–2014 and accounted for 46% of the total cost of marine 
machinery claims with an average claim per vessel of USD 
545 000, remaining the most expensive category in hull and 
machinery claims [2]. Wear faults are among the chief causes 
of main-engine damage, accounting for almost 50% of faults 
in main diesel engines [3]. Therefore, it is necessary to diag-
nose wear faults in main diesel engines to guarantee ship 
safety and reliability.

To date, many techniques have been developed for 
mechanical wear fault diagnosis, such as vibration analysis 
[4], acoustic emission [5], oil monitoring [6], and surface 
texture analysis [7]. Each technique has its own advantages 
and limitations. When applied to marine diesel engines, vibra-
tion analysis and acoustic emission measurement are subject 
to background noise, and abnormal vibration/acoustics may 
be perceptible under severe damage conditions. Moreover, 
it is difficult to acquire the surface texture of friction pairs 
in marine diesel engines, because it is costly/impossible to 
disassemble a marine engine for surface texture analysis. In 
contrast, oil monitoring is an appropriate technique for iden-
tifying wear faults of marine diesel engines. Engine lubricant 
oil carries debris that can give information about engine wear 
and oil samples can be collected without destroying any struc-
ture of the engine. Therefore, oil monitoring is easy and reli-
able in operation.

Generally, wear particle debris analysis and physicochem-
ical property analysis are used in oil monitoring [8]. The wear 
modes of friction pairs can be identified by using morpho-
logical characteristics extracted from wear particles, and then 
the causes of abnormal wear can be determined. Developing 
an intelligent wear mode identification system holds great 
promise for the condition monitoring and fault diagnosis of 
marine diesel engines [9–11]. With an intelligent system, the 
wear states of marine diesel engines can be evaluated without 
stopping or dismantling them, and early wear faults can be 
detected for just-in-time maintenance. Moreover, an intelli-
gent wear mode identification system can assist inexperienced 
engineers in evaluating the engine’s health state. It is worth 
noting that a crew with insufficient experience is listed by 
The Swedish Club as one of the top six causes of main-engine 
damage [2].

Wear characteristic extraction is the basis of developing an 
intelligent wear mode identification system. The characteris-
tics can be divided into 2D characteristics, such as particle 
shape and size, and 3D characteristics, such as surface topog-
raphy. Two-dimensional characteristics are extracted from 2D 
images acquired by optical microscopes, while 3D character-
istics are extracted from 3D images acquired by laser scanning 
confocal microscopes (LSCMs) or atomic force microscopes 
[12]. Two-dimensional characteristics are widely used in 

identifying cutting wear particles [13]. However, 3D charac-
teristics become necessary when wear particles have similar 
sizes or shapes. In recent years, 3D characteristic extraction 
has attracted much attention. Podsiadlo and Stachowiak [14] 
developed a modified partitioned iterated function system and 
used this system to obtain a full description of the topography 
of wear particles and surfaces. Yuan [15] proposed a method 
for characterizing the roughness of engineering surfaces 
and the surfaces of small wear particles in accordance with 
wavelet theory. These 3D characteristics make it possible to 
improve the accuracy of wear mode identification.

Many intelligent algorithms have been applied in wear 
mode identification. The most representative ones include 
artificial neural networks (ANNs), support vector machines 
(SVMs) and Grey models. Myshkin [16] performed an evalu-
ation of the possibility of employing an ANN for the classi-
fication of debris. Peng [17] and Xu [18] combined an ANN 
and knowledge-based expert system for the analysis of micro-
scopic wear particles. Gwidon [19] developed an identifica-
tion model based on an SVM to classify particles into fatigue, 
adhesive and abrasive wear particles. Wang [20] used principal 
component analysis to optimize the characteristic parameters 
of wear particles and then distinguish wear particles with 
Grey relational analysis. Other methods have also been used 
in this area, such as classification and regression trees [11], 
deterministic tourist walks [21], the AdaBoost algorithm [22], 
and extreme learning machines [23]. To the best of our knowl-
edge, most identification models for wear particles are based 
on 2D characteristics, and very few researches have used 3D 
characteristics to identify categories of wear particles [24]. 
Moreover, most wear mode identification models have been 
developed on the basis of data-driven methods, such as ANNs 
and SVMs. Expert-domain knowledge cannot be incorporated 
into these models. How to integrate expert-domain knowledge 
into an intelligent wear identification system, to enable the 
system to process quantitative and qualitative information 
simultaneously, remains a challenging task.

The belief rule base (BRB) is a semi-quantitative method 
that can address this challenge. The BRB is developed on 
the basis of the D–S theory of evidence, decision theory and 
traditional if-then rules [25]. This method can not only use 
different types of information (i.e. quantitative information 
and qualitative information) with uncertainties but also rep-
resent the relationship between input and output in a trans-
parent and interpretable way [26]. The initial BRB model can 
be built by expert-domain knowledge, and then optimized 
by intelligent algorithms [27]. The BRB has shown excel-
lent performance in many fields, including medical care, con-
sumer behavior prediction and safety assessment [28–30]. 
Therefore, it is worth evaluating the performance of the BRB 
in the wear mode identification of marine diesel engines. 
When applying the BRB in wear mode identification, one 
should pay attention to several issues. First, the number of 
antecedent attributes (i.e. characteristics of wear particles) 
and referential points should be appropriately determined, 
because it directly affects the number of rules and parameters 
in the BRB. In wear mode identification, not all wear parti-
cles need to be identified by using 2D and 3D characteristics 
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together. Some wear particles (e.g. cutting wear particles and 
spherical particles) can be well identified by their shape and 
size. Second, the initial BRB model should be optimized by 
a proper optimization method to ensure a robust system with 
good performance. However, researches addressing these 
two issues in constructing a BRB wear mode identification 
system have not yet been conducted.

In order to address the aforementioned problem, a multi-
level BRB (BBRB) method is developed in this paper to iden-
tify the wear modes of marine diesel engines. The multi-level 
structure is used to determine a proper number of appropriate 
attributes. The complexity of the BRB and the computational 
burden can be reduced significantly with this model struc-
ture. The silhouette value and fuzzy c-means clustering are 
employed to determine referential points in the BBRB and 
transform input sets into belief distributions. The genetic 
algorithm (GA) is adopted to optimize the BBRB parameters. 
A series of friction-wear experiments on the cylinder liner–
piston ring of marine diesel engines are carried out to evaluate 
the BBRB method.

2. The proposed BBRB system

2.1.  Structure of the proposed BBRB system

Wear particles have a direct relationship with the wear modes. 
Through wear particle identification, the wear modes can 
be determined and the engine condition can be further pre-
dicted. A literature review indicates that wear modes generally 
include abrasive wear, fatigue wear, cutting wear and adhesive 
wear [8]. Specifically, abrasive wear and cutting wear mainly 
produce cutting wear particles (C); fatigue wear produces 
laminar particles (L), spherical particles (SP) and fatigue spall 
particles (FS); and adhesive wear produces severe sliding 
wear particles (SSL) [31, 32].

Let X  =  [x1, x2, …, xM] denote the characteristics of wear 
particles which are extracted from wear particle images 
acquired by an LSCM. Here xi (i  =  1, 2, …, M) represents an 
attribute and M is the number of attributes. We further assume 
that D = [D1, D2, ..., DN ] is the output of the identification 
model and P is the corresponding parameter vector, where N  
is the number of wear particle categories. In order to develop 
an intelligent wear mode identification system using the BRB 

technique, the first step is to establish a causal relationship 
between X and D, the second step is to determine the referen-
tial points for X to avoid a combination explosion of BRBs, 
and the third step is to optimize the model parameter vector 
P for the purpose of achieving high identification accuracy.

As indicated in the literature, fatigue spall particles, severe 
sliding wear particles and laminar particles are difficult to dis-
tinguish by 2D characteristics. To solve this problem, a two-
level BRB (BBRB) model is designed such that each level 
can separately process the 2D and 3D characteristics of wear 
particles. Figure 1 shows the structure of the proposed BBRB 
system for wear mode identification.

In figure  1, [x1
1, x1

2, ..., x1
M1
] and [x2

1, x2
2, ..., x2

M2
] denote the 

input 2D characteristics for the first BRB level and the 3D 
characteristics for the second BRB level. D1 and D2 are the 
output of each level, which can be represented by the belief 
distributions as follows:

D1 = {(D1
1,β1

1), (D
1
2,β1

2), (D
1
3,β1

3)}� (1)

D2 = {(D2
1,β2

1), (D
2
2,β2

2), (D
2
3,β2

3)},� (2)

where β j
i ( j = 1, 2; i = 1, 2, 3) is the belief degree of 

every wear particle category and satisfies the constraints ∑3
i=1 β

j
i = 1 and 0 � β j

i � 1(i = 1, 2, 3; j = 1, 2).
In the output D1, severe sliding wear particles, fatigue 

spall particles and laminar particles are integrated into one 
category D1

3 as they are difficult to classify by their 2D 
characteristics. The output attribute with the maximum 
belief degree is considered as the wear particle type, i.e. 
j = argmax{β j

1,β j
2,β j

3}( j = 1, 2). However, if β1
3 is the 

maximum belief degree, the level-2 BRB is activated. In the 
level-2 BRB, the three wear particles which are difficult to 
identify in the level-1 BRB can be classified by the output 
attribute with the maximum belief degree.

As can be seen in figure 1, each level in the BBRB system is 
an independent BRB system; therefore, the inference process 
and optimization process of each level are conducted indepen-
dently. In the optimization process, the predicted category of 
the wear particle S′

j( j = 1, 2) is compared with the real type 
Sj( j = 1, 2), and (1 − UAj)( j = 1, 2) is used as the objective 
to be minimized with the GA method, where UAj( j = 1, 2) is 
the user accuracy on the jth level.

Figure 1.  Structure of the BBRB system.
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2.2.  BRB inference

2.2.1.  BRB.  The BRB of each level in the BBRB model rep-
resents expert-domain knowledge. On the ith (i  =  1, 2) level, 
the kth rule is defined as follows [24]:

Ri
k : if xi

1 is Ai
k,1 ∧ xi

2 is Ai
k,2... ∧ xi

Mi
is Ai

k,Mi
,

then {(Di
1,βi

k,1), (D
i
2,βi

k,2), ..., (Di
Ni

,βi
k,Ni

)}� (3)

with rule weight θi
k and antecedent attribute weights 

δi
k,1, δi

k,2, ..., δi
k,Mi

, where Ai
k,j(k = 1, ..., Li; j = 1, ..., Mi) 

denotes the referential value of the jth antecedent attribute in 
the kth rule, and Li is the number of rules in the ith BRB. 
Di

j( j = 1, ..., Ni) is the category of wear particles which is 
assigned with the belief degree βi

k,j(k = 1, ..., Li; j = 1, ..., Ni).
The number of rules in the ith BRB Li is determined 

by equation  (4) when the BRB is built by the exhaustive 
method:

Li =

Mi∏
j=1

Ti
j ,� (4)

where Ti
j ( j = 1, ..., Mi) is the number of referential points 

for the jth antecedent attribute. As indicated in equa-
tion (4), the size of a BRB is directly determined by Mi and 
Ti

j ( j = 1, ..., Mi). Therefore, appropriate antecedent attributes 
and referential points should be used in order that the BRB 
system can achieve satisfactory precision with proper model 
structure.

2.2.2.  Determination of referential points and input transfor-
mation.  To avoid an overlarge BRB and increased calcul
ation difficulty, the number of referential points should not 
be too large. Moreover, the referential values of each ante-
cedent attribute should be surrounded by adequate points 
[30]. Often, the number and values of referential points are 
determined by experts subjectively and therefore turn out 
to be inaccurate. In this paper, a new approach based on the 
k-means clustering algorithm and average silhouette value is 
proposed to determine referential points for every antecedent 
attribute. Specifically, the silhouette value s(i) (i = 1, ..., n) 
for every data point measures the similarity of one point to 
other points in its own cluster compared to its similarity to 
other points in other clusters [33, 34], with a value range of 
[−1, 1]. A high s(i) indicates the ith data point is clustered 
reasonably, and a negative value represents a bad partition, 
which should be avoided.

Every antecedent attribute in the BRB system for wear 
mode identification is considered to be independent of the 
others with equal importance, and therefore the number and 
values of referential points for each attribute are determined 
with the corresponding input of one antecedent attribute 
x = (x1, x2, ..., xn), where n is the number of data points. The 
flowchart for determining referential points, shown in figure 2, 
consists of five steps:

		 Step 1: Initialize the number of clusters k = 2, the 
maximum number of clusters K  (here K  is 5 to avoid an 
overlarge BRB), and the average silhouette value set S̄ .

		 Step 2: Partition x into k clusters with the cluster centers 
xc = (xc

1, xc
2, ..., xc

k). Based on the clustering result, calcu-
late the silhouette value of each point sk(i)(i = 1, ..., n).

		 Step 3: Traverse the whole silhouette value set Sk . If all 
values in Sk  are over 0, calculate the average silhouette 
value ̄s(k) and add ̄s(k) into the set S̄ . The number of clus-
ters then changes, i.e. k = k + 1. Otherwise, k acquires a 
new value directly, and then repeat Step 2.

		 Step 4: Repeat Step 2 and Step 3 until k is over K . Then, 
find the maximum average silhouette value ̄s_best in ̄S . The 
corresponding number of clusters k_best will be the number 
of referential points. Sequence the clustering centers 

xC
_best = (xC

_best1, xC
_best2, ..., xC

_bestk_best
) in ascending order 

C = (C1, C2, ..., Ck_best), where Ci < Ci+1.
		 Step 5: Output the number and values of referential points 

k_best and C.

Once the referential points are determined, the input is 
transformed to belief degrees—that is, it is matched to the 
referential points using the fuzzy c-means clustering algo-
rithm. For every antecedent attribute, the belief degree 
αij(1 � i � k_best, 1 � j � n), where xj matches the referen-
tial value Ci

_best(1 � i � k_best), is calculated according to 
equations (5)–(7):

Figure 2.  The flowchart for determining referential points.
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αij =




µij xj �= Ci
_best

αfj = 1, αij = 0 xj = C f
_best(i �= f )

α1j = 1, αij = 0 xj < C1
_best(i �= 1)

αk_bestj = 1, αij = 0 xj > Ck_best
_best(i �= k_best)

, (1 � i, f � k_best; 1 � j � n)

� (5)

µij =




k_best∑
f=1

(
d̂ij

d̂fj

)2/(m−1)


−1

(1 � i � k_best, 1 � j � n)

� (6)

d̂ij =
∥∥xj − Ci

_best

∥∥ .� (7)

In equation  (6), m  is the weight exponent, which con-
trols the relative weight placed on each of the distances 

from one data point to the referential points Ci
_best . As 

suggested in reference [35], 1.5 � m � 3 generally gives 
good results; m = 2 in this paper. An input data point 
xj( j = 1, ..., n) can be represented by a belief distribu-

tion {(C1
_best,α1j), (C2

_best,α2j), ..., (C
k_best

_best,αk_bestj)}, where ∑kbest
i=1 αij = 1 ( j = 1, ..., n).

2.2.3.  Rule inference with evidential reasoning (ER) algo-
rithm.  On each level, the activation weight of the kth rule ωk 
is calculated by

ωk =

θk

[
M∏

i=1
(αk

ij)
δ̄i

]

∑L
l=1 θl

[
M∏

i=1
(αk

ij)
δ̄i

] ,� (8)

where δ̄i = δi/ max
i=1,2,...M

{δi} is the normalized antecedent 

attribute weight. ωk  indicates the degree to which the kth rule 

is activated. If ωk = 0, the kth rule will not be activated [24].
The ER analytical algorithm is used to aggregate 

all the activated rules and generate final conclusions 
D = {(D1, β̂1), (D2, β̂2), ..., (DN , β̂N)}. β̂i(i = 1, ..., N) is the 
predicted belief degree of Di , which is acquired by equa-
tions (9) and (10):

β̂i =

µ

[
L∏

k=1

(
ωkβ

k
i + 1 − ωk

∑N
i=1 β

k
i

)
−

L∏
k=1

(
1 − ωk

∑N
i=1 β

k
i

)]

1 − µ

[
L∏

k=1
(1 − ωk)

] (i = 1, 2, ..., N)

� (9)

µ =

[
N∑

i=1

L∏
k=1

(ωkβ
k
i + 1 − ωk

N∑
i=1

βk
i )− (N − 1)

L∏
k=1

(1 − ωk

N∑
i=1

βk
i )

]−1

,

� (10)
where βk

i  is the belief degree assigned to Di  based on expert 
experience or statistical analysis in the initial BRB model.

2.2.4.  Optimization of BBRB parameters based on GA.  The 
initial parameters of the BBRB on each level are given accord-
ing to expert-domain experience, which may not be accurate. 
It is therefore necessary to fine-tune the parameters of a BRB 
model by using an optimization algorithm to improve the 
model performance. As indicated in figure  1, model optim
ization on each level is conducted independently. On each 
level, P = [β11, ...,βNL, θ1, ..., θL] represents the parameters 

to be adjusted, and the total number of parameters optimized 
equals (N × L + L). Since wear mode identification is a clas-
sification problem, the misclassification rate should be as low 
as possible. (1 − UA) is used as the optimization objective 
function, where UA is the ratio of the number of correctly 
identified samples to the total number of samples as indicated 
in equation (11):

UA =
nc

n
,� (11)

where nc is the number of correctly identified samples and n is 
the total number of training samples. The optimization model 
is defined by equations (12) and (13):

min{ f (x) = 1 − UA}
s.t.

� (12)

0 � βik � 1 (i = 1, . . . , N; k = 1, . . . , L)� (13a)

0 � θk � 1(k = 1, . . . , L)� (13b)

N∑
i=1

βik = 1.� (13c)

The parameters of the BBRB model are optimized by the 
GA. In the optimization, expert experience in wear mode 
identification should be embedded in the initial population. 
Therefore, in this paper, the initial population consists of two 
parts: individuals provided by experts and randomly gener-
ated individuals. The optimization objective function f (x) in 
equation (12) is used as the fitness function. The optimization 
process can be conducted by using the Global Optimization 
Toolbox in MATLAB.

3.  Establish the BBRB system using experimental 
data

Experimental datasets on wear particles of diesel engines 
were used in this study to build the proposed BBRB system 
for wear mode identification. The experimental wear particles 
were generated from an EQD 210-20 diesel engine, a ZH 1115 
diesel engine and an abrasion testing machine. A total of 150 
samples, containing cutting wear particles, spherical particles, 
fatigue spall particles, laminar particles and severe sliding 
wear particles, were obtained and prepared for analysis using 
the BBRB system.

3.1.  Determination of referential points

Five characteristics of the wear particle morphology were 
chosen as antecedent attributes of the multi-level BRB system 
for wear mode identification based on analysis of the character-
istics of various wear particles [19, 36–38]. These characteristics 
included three 2D characteristics and two 3D characteristics: 
the aspect ratio (AR), equivalent diameter (De) and roundness 
(R) for the level-1 BRB and the roughness average (Sa) and tex-
ture direction index (Stdi) for the level-2 BRB. These five ante-
cedent attributes are described as follows [39, 40]:

Meas. Sci. Technol. 29 (2018) 015110
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	(1)	The AR is the ratio between the length and breadth of a 
wear particle and is often greater than or equal to 1.

	(2)	De is the diameter of a circle having an area equal to the 
area enclosed by the shape contour of a wear particle:

De =

√
Enclosed Area

π
.

� (14)

	(3)	 R is the roundness, which describes the shape resem-
blance of a wear particle to a circle:

R =
D2

e

D2
max

,
� (15)

		 where Dmax indicates the maximum diameter of the 
minimal enclosing circle.

	(4)	Sa is the arithmetical absolute mean of the ordinate values 
with a definition area:

Sa =
1

MN

M−1∑
k=0

N−1∑
l=0

|z(xk, yl)|.
� (16)

	(5)	 Stdi is defined as the average amplitude sum divided by the 
amplitude sum of the dominant direction. Stdi is always 
between 0 and 1. A surface with very dominant directions 
has a Stdi value close to 0 and if the amplitude sums of all 
directions are similar, Stdi is close to 1.

Stdi =

∑M−1
i=0 A(ix/M)

MAmax
,� (17)

		  where A(α) is acquired by calculation of the Fourier 
power spectrum.

The referential points of every antecedent attribute are 
described by semantic terms and the corresponding referential 
values as shown in table 1. From table 1, it can be seen that 
the antecedent attributes AR, D, R, Sa, and Stdi are described 
by two, two, three, two and four semantic terms, respectively. 
The semantic terms for referential points are very low (VL), 
low (L), middle (M) and high (H).

Every input needs to be transformed in terms of the referen-
tial points defined in table 1 and represented by belief degrees 
indicating how the input matches the referential points. Using 
equations (5)–(7), the input of the BBRB can be transformed into 
a belief distribution. For example, the AR, i.e. x1

1 = 3.29, can 
be transformed into {(L : 0.8935), (H : 0.1065)}. Similarly, 
the input corresponding to the other antecedent attributes can 
be transformed into belief distributions.

3.2.  Construction of initial BRB

As described in section 2.2, there are two levels in the BBRB 
system for wear mode identification. The output of the first 
level is O1 = {(D1

1,β1
1), (D

1
2,β1

2), (D
1
3,β1

3)} and that of the 
second is O2 = {(D2

1,β2
1), (D

2
2,β2

2), (D
2
3,β2

3)}. D1
1, D1

2, D1
3 

represent the cutting wear particles, spherical particles, and 

SBL particles (which is a genetic term for severe sliding wear 
particles, fatigue spall particles, and laminar particles) in the 
level-1 BRB, and D2

1, D2
2, D2

3 represent the severe sliding wear 
particles, fatigue spall particles and laminar particles in the 
level-2 BRB. Belief rules in the level-1 BRB and level-2 BRB 
are represented by (18a) and (18b) respectively:

R1
k : if AR is Ck

1 ∧ D is Ck
2 ∧ R is Ck

3,
then {(D1

1,β1
1k), (D

1
2,β1

2k), (D
1
3,β1

3k)},
� (18a)

where 
∑3

i=1 β
1
ik � 1, with rule weight θ1

k.

R2
k : if Sa is Ck

4 ∧ Stdi is Ck
5,

then {(D2
1,β2

1k), (D
2
2,β2

2k), (D
2
3,β2

3k)},
� (18b)

where 
∑3

i=1 β
2
ik � 1, with rule weight θ2

k .
According to equation  (4), it can be found that 12 rules 

and eight rules are generated in the level-1 BRB and level-2 
BRB respectively. On each level, we assume that all rules are 
of the same weight of 1 and the weight of every antecedent 
attribute is 1. The belief degree assigned to every kind of wear 
particle is based on expert knowledge and statistical analysis 
of historical data.

The inference process of the initial BRB system for wear 
mode identification is conducted based on equations (8)–(10) 
with the initial parameters we assume. If the maximum belief 
degree of the output in the level-1 BRB corresponds to SBL 
particles, the input sample is further identified by the level-2 
BRB, as the kind of wear particle with the maximum belief 
degree.

3.3.  Optimization of the BBRB system

As shown by the structure of the multi-level BRB system, 
the BRB model on each level is optimized independently. In 
the level-1 BRB, N1  =  3 and L1  =  12 so that the number of 
parameters optimized in P1 is 48, while N2  =  3 and L2  =  8 
so that the number of parameters optimized in P2 is 32 in the 
level-2 BRB.

To acquire more information from limited samples and 
reduce variability, five-fold cross-validation is performed. 
Specifically, the original dataset is randomly partitioned into 
five equal-sized sub-datasets. Of the five sub-datasets, a single 
sub-dataset containing 30 samples is retained as validation 
data for testing the model, and the remaining four sub-datasets 
with 120 samples are used as training data. The cross-valida-
tion process is then conducted five times and the validation 
results are averaged over the five rounds. The initial param
eters of all BRB systems are the same in every cross-validation 

Table 1.  Referential points of input antecedent attributes in BBRB.

Attributes

Semantic term

VL L M H

AR — 1.947 — 7.180
D — 26.795 — 80.228
R — 0.139 0.478 0.801
Sa — 0.237 — 0.475
Stdi 0.069 0.242 0.318 0.413
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process. Specifically, the two initial population sets for the 
BRBs on the two levels consist of 50 individuals each; the 
maximum evolutionary generation for each BRB is 100. After 
the initial model is tuned, optimized parameter sets P̃1 and P̃2 
are obtained, which are further used in wear mode identifica-
tion. The optimized parameter sets of each BRB level in the 
five-fold cross-validation are shown in appendix A.

Take the sample (x1 : 1.83, x2 : 88.86, x3 : 0.37, x4 : 0.423, 
(x1 : 1.83, x2 : 88.86, x3 : 0.37, x4 : 0.423, x5 : 0.0833) as an  
example and use the parameters of the BRB system in the 
first cross-validation to determine the type of wear particle. 
(x1 : 1.83, x2 : 88.86, x3 : 0.37) is the input of the level-1 
BRB, and it mainly activates five rules in the first rule base, 
which are (ω1

1 = 0.002;ω1
2 = 0.015;ω1

4 = 0.139;ω1
4 = 0.798;

ω1
6 = 0.044) based on equation (8), and the activated weights  

of other rules are all approximately 0. The output derived 
from the level-1 BRB is O1 = {(D1

1, 0.113), (D1
2, 0.106), 

(D1
3, 0.781)} according to equations  (9) and (10), indi-

cating this sample is most likely SBL, which needs to 
be further identified by the level-2 BRB. On the second 
level, (x4 : 0.423, x5 : 0.0833) is the input and acti-
vates five rules in the second rule base, which are 
(ω2

1 = 0.102;ω2
5 = 0.881;ω2

6 = 0.009;ω2
7 = 0.004;ω2

8 = 0.002), 
and the activated weights of the rest of the rules are almost 
0. Similarly, with equations  (9) and (10), the output of the 
level-2 BRB is O2 = {(D2

1, 0.669), (D2
2, 0.182), (D2

3, 0.149)}, 
indicating that this sample belongs to the category of severe 
sliding wear particles with a belief degree of 0.669. A spe-
cific input set can activate several rules synchronously, but 
generally, only one or two rules play dominant roles in gen-
erating output with greater activated rule weights. In the 
above example, although the input set activates five rules on 
each BRB level, the activated weight of the fourth rule in the 
level-1 BRB and that of the fifth rule in the level-2 BRB are 
significantly greater than those of the other activated rules. It 
can be concluded that the two rules are crucial to making the 
final determination.

4.  Validation of the BBRB system

4.1.  Cross-validation

4.1.1.  Validation results.  The BBRB system for wear mode 
identification was evaluated by five-fold cross-validation 
using the experimental datasets in section 3. The UA of the 
testing dataset acquired in each cross-validation trial was used 
as the evaluation index. The final validation result was the 
average value of the UA obtained in the five cross-validation 
trials. The performance of the BBRB was compared with 
that of four other models. These four models were a bi-level 
BRB without the GA (INI-BBRB), a single-level BRB system 
using only 2D wear characteristics (SBRB-2D), a single-level 
BRB system using 2D characteristics and 3D characteristics 
(SBRB-2D&3D), and a bi-level ANN (BANN) system with 
2D characteristics and 3D characteristics as the antecedent 
attributes. The referential points for the single-level BRB sys-
tems (i.e. SBRB-2D and SBRB-2D&3D) are shown in table 2. 
Consequently, there are 12 rules in SBRB-2D, and 96 rules in 

SBRB-2D&3D if the rule bases are built according to equa-
tion (4). To avoid any knowledge gap on the 96 rule bases and 
reduce the optimization burden, only rules that can be clearly 
decided by expert experience in the experimental data were 
considered in SBRB-2D&3D, and hence, we finally obtained 
20 rules. As for the BANN model, the structure of the level-1 
ANN was 3–4–3, and the level-2 ANN was designed as 2–3–3.

Figure 3 shows the average UA value in the five-fold cross-
validation, and figure 4 shows the UA values of the individual 
wear modes. It can be seen in figure 3 that the UA of the INI-
BBRB is 78%, which is lower than the 89.3% of the proposed 
BBRB. As shown in figure 4, the INI-BBRB performs poorly 
on SBL particles, especially on laminar particles, with only 

Table 2.  Referential points of input antecedent attributes in SBRB.

Attributes

Semantic term

VL L M H

AR — 1.947 — 7.180
D — 26.795 — 80.228
R — 0.139 0.478 0.801
Sa — 0.1297 — 0.4062
Stdi — 0.0893 0.3294 0.8743

Figure 3.  Average UA in the five-fold cross-validation by different 
identification models.

Figure 4.  Results of identification of the five wear particles using 
different models.

Meas. Sci. Technol. 29 (2018) 015110



X Yan et al

8

43.33% accuracy. This is because the model parameters of the 
INI-BBRB are just determined by experts and cannot fit the 
specific data characteristics in the training dataset. Moreover, 
since only a few researches have focused on 3D characteris-
tics, there is insufficient knowledge on the 3D characteristics 
of different wear particles that is referred to in building ini-
tial BRBs. As a result, the performance of the INI-BBRB is 
lower than that of the BBRB. Thus, it is necessary to optimize 
the BRB parameters to enhance the precision of wear mode 
identification.

As can be seen in figure 3, SBRB-2D provides the lowest 
average UA value among the five models, i.e. 67.33%. From 
figure 4 it can be seen that SBRB-2D performs well on iden-
tifying cutting wear particles and spherical particles, but 
extremely poorly on identifying severe sliding wear particles, 
fatigue spall particles, and laminar particles. The UA values 
of the other three modes are below 60%. These observations 
confirm that it is necessary to use 3D characteristics to distin-
guish wear particles that have similar values in size and shape. 
Further, cutting wear particles and spherical particles can be 
accurately identified by SBRB-2D because of their distin-
guishable 2D characteristics.

As indicated in figures 3 and 4, the performance of SBRB-
2D&3D is quite similar to that of the BBRB model. Although 
SBRB-2D&3D is inferior to the BBRB model in identifying 
fatigue spall particles and laminar particles, it has satisfactory 
accuracy compared to the other three wear modes. However, 
it should be noted that the rule base of SBRB-2D&3D in the 
analysis is not complete but only covers cognizable rules for 
the experimental data. If a sample does not match any rule 
of the current rule base, no rule is activated. As a result, the 
SBRB-2D&3D model may fail to work. More importantly, 
the SBRB-2D&3D model is more complex than the BBRB no 
matter what the number of rules or optimized parameters is. 
When a rule base is constructed by the exhaustive method, the 
number of rules is determined by equation (4). Any additional 
antecedent attributes or new referential points will increase 
the size of the rule base sharply. For example, the referential 
points of the five antecedent attributes in SBRB-2D&3D are 
2, 2, 3, 2, and 3; therefore, there are 96 rules to be determined 
and 576 parameters to be optimized. It is difficult for experts 
to construct the initial rule base and it is impossible/difficult to 
optimize the identification model with insufficient datasets. In 
contrast to that in the SBRB-2D&3D model, the total number 
of rules in the BBRB is calculated by equation  (19), where 
the addition operator can decrease model complexity signifi-
cantly. As for the BBRB model in this paper, the total number 
of rules is 20 (Ltotal = 2 × 2 × 3 + 2 × 4) and the number of 
parameters optimized on both levels is 48 and 32.

Ltotal =

I∑
i=1

Mi∏
j=1

Ti
j .� (19)

Since an ANN has remarkable ability to approximate the 
relationships in a dataset with sufficient data samples, the 
BANN provides the best average UA value, 92%, among the 
five models as shown in figure 3. The BANN performs well on 
identifying laminar particles with a UA value of 93.3%, com-
pared to the 76.7% achieved by the BBRB, but it generates 
the worst UA value on identifying cutting wear particles (C), 
as shown in figure 4. As a data-driven method, the BANN has 
several inherent limitations, but these limitations can be over-
come by the proposed BBRB model owing to its embedded 
expert-domain knowledge and transparent inference process.

Firstly, the BANN model is a black-box simulator. In the 
whole process, it can be known that the BANN model is a 
non-linear combination of some neurons, but it is difficult 
for engineers to explain what each neuron is doing, and engi-
neers do not know what rules have been applied in the tools 
when they are using the BANN model to identify wear modes. 
In contrast, each parameter of the BBRB model has its own 
real meaning. The intermediate parameter ω  (activated rule 
weight) shows which rules are activated by a specific input 
set and aggregated in the BBRB model by using the analytic 
ER algorithm, and which rules contribute more to the final 
output. Additionally, relationships between the characteristics 
of wear particles and wear particle categories are represented 
by the final BRB directly and transparently. Every rule in 
the BRB illustrates one kind of input–output mapping. As a 

Table 3.  UA of INI-BBRB, BBRB, BANN, SBRB-2D and SBRB-2D&3D on testing datasets in the five-fold cross-validation.

Folds 1st fold 2nd fold 3rd fold 4th fold 5th fold Average Range

INI-BBRB 0.833 0.733 0.733 0.800 0.800 0.780 0.100
BBRB 0.933 0.900 0.900 0.867 0.867 0.893 0.067
BANN 0.933 0.933 0.833 0.900 1.000 0.920 0.167
SBRB-2D 0.733 0.633 0.667 0.667 0.667 0.673 0.100
SBRB-2D&3D 0.867 0.933 0.900 0.800 0.867 0.873 0.133

Figure 5.  Results of wear mode identification by BBRB using the 
parameters in appendix B.
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transparent model, it is clear for engineers to understand how 
the BBRB model makes the determination, and all belief rules 
in the BBRB model can be checked by experts before it is 
implemented in real practice so that irrational rules can be 
avoided.

Secondly, the performance of the BANN model varies 
obviously in different training datasets. Table  3 shows the 
performance of the five models in every round of the five 
cross-validation trials. From table 3, it can be seen that the 
performance of the BBRB is the most stable in the five-fold 
cross-validation, indicating that the BBRB model can identify 
different wear particles in a robust way. Compared with that 
of the models developed on the basis of the BRB inference 
method, the performance of the BANN varies more obviously 
from one fold to another, and the range of UA of the BANN is 
0.167 while that of the BBRB is only 0.067. Furthermore, the 
parameters of the BBRB model change slightly from fold to 
fold as shown in appendix A, which further proves the robust-
ness and credibility of the BBRB model. This may be partly 
because expert-domain knowledge has been embedded into 
the BBRB model.

4.1.2.  Discussion.  Considering the performance of the 
BBRB model in the five-fold cross-validation, the parameters 
in the first fold are selected for level 1 of the BBRB model 
and the second-fold parameters for level 2. The two BRBs 
after optimization are listed in appendix B. Figure  5 shows 
the identification results for the whole dataset based on the 
final-optimized BBRB model. It can be seen from figure  5 
that two cutting wear particles are misidentified as laminar 
wear particles, one fatigue spall particle and six laminar par-
ticles are misrecognized as spherical particles, and five fatigue 
spall particles are misclassified as laminar particles. Table 4 
is the confusion matrix of the final-optimized BBRB model, 
which clearly reflects the performance of the BBRB model 
in wear mode identification. In the confusion matrix, TP, FN, 
and FP represent the number of true positive, false negative 
and false positive results, respectively. The true positive rate 
(TPR) of the final-optimized BBRB on the experimental wear 
particles is beyond 80%, and most of the positive predictive 
values (PPVs) are over 80% except that for laminar particles 
(77.4%). Both figure 5 and table 4 indicate that the proposed 
BBRB model can obtain satisfactory results in wear mode 
identification.

4.2.  Addition validation using filtergrams

In order to highlight the effectiveness of the proposed BBRB 
model, a verification dataset totally independent of the training 
and testing datasets was used to further verify its performance. 
The samples were collected in an operation of a ZH1115 diesel 
engine with four cylinder liners of different surface textures: 
an original cylinder liner, a concave cylinder liner, a groove 
cylinder liner, and a concave-and-groove cylinder liner. The 
engine with every cylinder liner operated for five cycles, 

and in one cycle the engine operated at 200 r min−1 for 2 h,  
400 r min−1 for 2 h and 800 r min−1 for another 2 h. An oil 
tube was connected to the hole on the cylinder to collect the 
oil samples. These oil samples were used to make filtergrams 
to observe the wear particle morphology. The Scanning Probe 
Image Processor was used to analyze the characteristics of the 
wear particles.

Thirty-nine samples were acquired from hundreds of par-
ticle images after excluding invalid images and normal sliding 
wear particle images. During the operation of the diesel engine, 
fatigue wear was the dominant wear mode. As a result, fatigue 
spall particles made up the majority. The typical filtergrams 
on every wear particle are shown in figure 6. Figure 7 is the 
distributed output given by the final BBRB model, showing 
the categories of wear particles in the verification dataset. 
As indicated by the rectangle in figure 7(a), two cutting wear 
particles are misclassified as SBL particles, and two severe 
sliding wear particles and two fatigue spall particles are mis-
recognized as laminar particles as shown in figure 7(b). Since 
the output of the final BANN model (i.e. the model acquired 
in the fifth trial) can only be discrete values without belief 
degrees, the categories of wear particles are represented by 1, 
2 and 3 as described in figure 8. In figure 8(a), one cutting wear 
particle and two spherical particles are misidentified as SBL 
particles, and two severe sliding wear particles, four fatigue 
spall wear particles and three laminar particles are misclassi-
fied as indicated in figure 8(b). Consequently, the accuracies 
of the BBRB and BANN are 0.846 and 0.692, indicating the 
final BBRB wear mode identification model is more flexible.

Actually, there is a debate as to whether it is necessary to 
develop an intelligent model for wear mode identification. 
As indicated in [18], experts are good at utilizing all types of 
information to assess wear particles, but when information is 
limited (such as when only numerical information or 3D infor-
mation is available), experts may have difficulties in making 
a correct decision. At the same time, experts can perform well 
with the typical particles, such as cutting wear particles, as 
shown in figure 6(b), but they may make mistakes on wear 
particles that have similar 2D or 3D characteristics, just as 
the INI-BBRB and SBRB-2D models might. Additionally, it 
is time-consuming and subjective for experts to process wear 
particle filtergrams, especially for new engineers with little 
experience. In this situation, an intelligent model for wear 
mode identification will be much helpful, and necessary.

Table 4.  Confusion matrix of the final-optimized BBRB.

C SP SSL FS L TP  +  FN
TPR 
(%)

C 28 0 0 0 2 30 93.3
SP 0 30 0 0 0 30 100
SSL 0 0 30 0 0 30 100
FS 0 1 0 24 5 30 80
L 0 6 0 0 24 30 80
TP  +  FP 28 37 30 24 31 150
PPV (%) 100 81.1 100 100 77.4
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Figure 6.  Filtergrams of the five typical wear particles: (a) severe sliding wear particle, (b) cutting wear particle, (c) fatigue spall particle, 
(d) laminar particle, and (e) spherical particle.

Figure 7.  Verification results given by final BBRB: (a) level-1 BRB; (b) level-2 BRB.

Figure 8.  Verification result given by final BANN: (a) level-1 ANN; (b) level-2 ANN.
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5.  Conclusions

This paper is the first to propose a multi-level BRB system 
to categorize wear particles, for the purpose of identifying 
the wear modes of marine diesel engines. To reduce model 
complexity and the calculation burden, two individual levels 
are designed to deal with the 2D and 3D characteristics of 
wear particles. The model referential points and parameters 
are appropriately determined by the silhouette value, fuzzy 
c-means clustering, and GA algorithms. Experimental data-
sets are used to verify the effectiveness of the BBRB model. 
The analysis results demonstrate that (1) the BBRB model 
can achieve promising results on wear mode identification; 
(2) 3D characteristics are essential to distinguishing wear 
particles, especially for wear particles with similar 2D char-
acteristics; (3) dividing a whole BRB model into several 
levels and determining referential points by using clustering 
algorithms are effective for reducing the size of rule bases; 
and (4) since expert-domain knowledge has been embedded 

into the proposed BBRB, the model exhibits stable perfor-
mance in five-fold cross-validation.

Although the BBRB model for wear mode identification has 
been verified by experimental data, its capability still needs to 
be enhanced and tested by wear particles collected from marine 
diesel engines in real-world ships. Currently, we are collecting 
oil samples from a real ship, named Changjing 2, in the Yangtze 
River, China, to evaluate the performance of the proposed BBRB 
system. In addition, based on our experimental analysis, if new 
rules could be added to a rule base automatically based on the new 
samples, the performance of the BBRB will be further enhanced. 
Our future work will investigate self-adaptive BRB models.

Acknowledgments

We acknowledge financial support from the National Sci-
ence Foundation of China (Grant No. 51422507, U1610109, 
and U170920062) and Yingcai Project of CUMT (Grant No. 
YC2017001).

Appendix A. The parameters of every fold’s belief rule base on each level

Level 1

β1 β2 β3 θ



0.317 0.621 0.062 0.673
0.644 0.163 0.194 0.976
0.429 0.031 0.540 0.839
0.584 0.134 0.282 0.780
0.773 0.124 0.104 0.977
0.788 0.021 0.191 0.865
0.055 0.871 0.073 0.784
0.529 0.183 0.288 0.937
0.455 0.283 0.263 0.816
0.227 0.728 0.045 0.824
0.441 0.397 0.162 0.874
0.432 0.407 0.161 0.751




β1 β2 β3 θ


0.322 0.516 0.162 0.465
0.553 0.158 0.289 0.764
0.448 0.075 0.477 0.665
0.498 0.139 0.363 0.602
0.623 0.174 0.203 0.803
0.573 0.130 0.297 0.698
0.089 0.734 0.177 0.637
0.434 0.262 0.304 0.864
0.374 0.266 0.360 0.704
0.304 0.521 0.175 0.721
0.370 0.377 0.253 0.863
0.349 0.388 0.264 0.678




β1 β2 β3 θ


0.310 0.554 0.137 0.584
0.622 0.163 0.215 0.673
0.354 0.212 0.434 0.708
0.539 0.213 0.249 0.716
0.611 0.169 0.221 0.627
0.623 0.236 0.141 0.796
0.094 0.669 0.237 0.676
0.515 0.281 0.204 0.734
0.392 0.280 0.328 0.721
0.257 0.624 0.119 0.846
0.386 0.349 0.265 0.520
0.531 0.287 0.182 0.879




β1 β2 β3 θ


0.384 0.481 0.135 0.671
0.641 0.161 0.197 0.735
0.297 0.227 0.476 0.450
0.279 0.474 0.247 0.733
0.496 0.322 0.182 0.531
0.502 0.187 0.312 0.676
0.220 0.574 0.206 0.650
0.491 0.261 0.249 0.902
0.286 0.415 0.300 0.555
0.348 0.559 0.093 0.717
0.251 0.487 0.263 0.662
0.431 0.216 0.353 0.397




β1 β2 β3 θ


0.339 0.490 0.171 0.588
0.562 0.294 0.145 0.666
0.365 0.116 0.519 0.630
0.623 0.291 0.086 0.803
0.551 0.148 0.302 0.650
0.678 0.119 0.203 0.492
0.264 0.601 0.135 0.676
0.452 0.354 0.194 0.661
0.433 0.274 0.293 0.779
0.210 0.689 0.101 0.832
0.343 0.308 0.349 0.715
0.437 0.365 0.198 0.752



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Level 2

β1 β2 β3 θ



0.698 0.194 0.108 0.763
0.161 0.168 0.671 0.708
0.185 0.519 0.296 0.537
0.145 0.384 0.471 0.636
0.658 0.186 0.156 0.504
0.123 0.627 0.250 0.651
0.207 0.518 0.276 0.648
0.253 0.708 0.039 0.630




β1 β2 β3 θ


0.709 0.288 0.004 0.695
0.218 0.227 0.556 0.814
0.233 0.441 0.325 0.468
0.101 0.327 0.572 0.570
0.702 0.167 0.132 0.472
0.163 0.594 0.243 0.560
0.217 0.471 0.312 0.612
0.208 0.775 0.017 0.707




β1 β2 β3 θ


0.567 0.367 0.066 0.732
0.312 0.184 0.504 0.749
0.328 0.522 0.150 0.707
0.165 0.120 0.714 0.512
0.501 0.429 0.069 0.487
0.322 0.469 0.209 0.851
0.227 0.342 0.431 0.479
0.206 0.244 0.551 0.858




β1 β2 β3 θ


0.708 0.143 0.149 0.902
0.218 0.063 0.719 0.847
0.356 0.517 0.127 0.852
0.152 0.275 0.574 0.704
0.651 0.176 0.172 0.574
0.230 0.500 0.270 0.547
0.172 0.726 0.102 0.638
0.227 0.499 0.274 0.734




β1 β2 β3 θ


0.708 0.143 0.149 0.902
0.218 0.063 0.719 0.847
0.356 0.517 0.127 0.852
0.152 0.275 0.574 0.704
0.651 0.176 0.172 0.574
0.230 0.500 0.270 0.547
0.172 0.726 0.102 0.638
0.227 0.499 0.274 0.734




Appendix B.  Belief rule bases of the final BBRB

Level 1

Level 2

Rule No.

Antecedent attributes Consequent

Rule weightSa Stdi SSL FS L

1 L VL 0.7088 0.2876 0.0036 0.6951
2 L L 0.2178 0.2266 0.5556 0.8137
3 L M 0.2332 0.4414 0.3254 0.4680
4 L H 0.1012 0.3266 0.5722 0.5703
5 H VL 0.7018 0.1667 0.1315 0.4718
6 H L 0.1628 0.5938 0.2434 0.5599
7 H M 0.2170 0.4709 0.3121 0.6121
8 H H 0.2083 0.7748 0.0169 0.7072

Rule No.

Antecedent attributes Consequent

Rule weightAR D R C SP SBL

1 L L L 0.6208 0.0619 0.3173 0.6734
2 L L M 0.1625 0.1937 0.6438 0.9758
3 L L H 0.0310 0.5403 0.4288 0.8387
4 L H L 0.1339 0.2823 0.5838 0.7796
5 L H M 0.1235 0.1040 0.7725 0.9771
6 L H H 0.0206 0.1913 0.7881 0.8645
7 H L L 0.8712 0.0734 0.0554 0.7841
8 H L M 0.1832 0.2876 0.5292 0.9369
9 H L H 0.2827 0.2625 0.4548 0.8159
10 H H L 0.7279 0.0452 0.2268 0.8243
11 H H M 0.3970 0.1619 0.4411 0.8740
12 H H H 0.4066 0.1614 0.4320 0.7507
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