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Abstract

Prior cross-cultural studies have demonstrated differences among Eastern and Western
cultures in memory and cognition along with variation in neuroanatomy and functional
engagement. We further probed cultural neuroanatomical variability in terms of its relation-
ship with memory performance. Specifically, we investigated how memory performance
related to gray matter volume in several prefrontal lobe structures, including across cultures.
For 58 American and 57 Taiwanese young adults, memory performance was measured
with the California Verbal Learning Test (CVLT) using performance on learning trial 1, on
which Americans had higher scores than the Taiwanese, and the long delayed free recall
task, on which groups performed similarly. MRI data were reconstructed using FreeSurfer.
Across both cultures, we observed that larger volumes of the bilateral rostral anterior cingu-
late were associated with lower scores on both CVLT tasks. In terms of effects of culture,
the relationship between learning trial 1 scores and gray matter volumes in the right superior
frontal gyrus had a trend for a positive relationship in Taiwanese but not in Americans. In
addition to the a priori analysis of select frontal volumes, an exploratory whole-brain analysis
compared volumes—without considering CVLT performance—across the two cultural
groups in order to assess convergence with prior research. Several cultural differences
were found, such that Americans had larger volumes in the bilateral superior frontal and lat-
eral occipital cortex, whereas Taiwanese had larger volumes in the bilateral rostral middle
frontal and inferior temporal cortex, and the right precuneus.

Introduction

Prior research has demonstrated the potential for different types of learning and experiences
to alter the brain’s wiring and structure [1-3]. In terms of memory, neuroanatomical differ-
ences across individuals could affect how well information is encoded, consolidated, and
stored in memory, or, inversely, having a stronger or poorer ability to remember information
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that no competing interests exist. we focus on the relationship between performance on a verbal learning task and correspond-
ing differences in structural measures of prefrontal volumes. In particular, neuropsychological
tasks assessing memory, including the California Verbal Learning Test [4] have been shown to
be sensitive to structural volumes [5]. In addition, we focus on individual differences through
the lens of culture, comparing participants from the United States and Taiwan to assess the
ways in which relationships between structural measures of the brain and performance on
tests of memory may differ across cultural groups.

Cultural influences on cognition and neural structures

Culture represents one set of life experiences that can shape cognition and the brain [6]. In
terms of attention and memory, East Asians have a holistic processing orientation that
includes focusing broadly, such as attending to the entire field or considering the relationship
between an object and its context; in contrast, Westerners have an analytic processing orienta-
tion that is associated with narrower object focus and organizing information by rules and cat-
egories independent of context [7-9]. These different orientations lead Americans to have
more detailed autobiographical memory [10] and higher levels of specific memory for object
details than East Asians [11, 12]. Easterners tend to focus on functional relationships between
items whereas Westerners focus on hierarchical organization such as taxonomic categories
[13, 14]. In addition, one study using the Framed-Line test illustrated this dissociation in pro-
cessing styles, with Americans more accurate at drawing the line in the absolute task, indicat-
ing better memory for exact size of focal objects, whereas East Asians were more accurate for
the proportional task, indicating better memory for contextual relationships [15, 16] Some
research has linked cultural differences in holistic and analytic processing styles to indepen-
dent and interdependent self-construal styles [17]. Western cultures promote an independent
self-construal, focusing on the self as distinct from others, appreciating one’s differences com-
pared to others, and valuing asserting oneself [7, 18]. East Asian cultures promote an interde-
pendent self-construal, conceptualizing of the self in relation to others, focusing on fitting in
with others, and stressing the importance of harmonious relationships [7, 18].

Evidence for cultural differences also emerges in comparisons of cognitively impaired pop-
ulations. Chinese and Americans were compared on a neuropsychological assessment called
the Blessed-Roth Information-Memory-Concentration Test [19]. Chinese participants outper-
formed the Americans in answering questions regarding orientation to time and place, sug-
gesting a more holistic orientation emphasizing context. However, the Americans performed
better on items that required more analytic detail-focus such as recall of specific historical
dates [20]. These results indicate the pervasiveness of cultural differences, even having implica-
tions for neuropsychological assessment of patients [21].

In terms of literature on cross-cultural differences in the structure of the brain, there are
merely a handful of studies that have compared Easterners and Westerners. One study col-
lected MRI measures of cortical thickness and density from younger and older Singaporeans
of Asian descent and Americans [22]. The participants were well matched for neuropsycholog-
ical performance in several domains. Results indicated that several frontal regions and the
right parietal lobule were larger in younger Americans than Singaporeans, although the left
temporal gyrus was thicker in Singaporeans than Americans [22]. Another study converged
with Chee et al [22]’s results in finding that structures within the frontal and parietal lobe were
smaller in Chinese compared to Caucasians [23, 24]. However, this study also indicated that
Chinese participants had greater cortical volume, thickness and surface area in several specific
temporal lobe structures and the paracingulate/cingulate gyrus compared to Caucasians [23].
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In addition, Huang et al [25] found consistent results in that frontal-parietal areas and the cerebel-
lum are larger in Westerners, whereas temporal-occipital regions are larger in Easterners [25]. It
has been suggested that the thickness in the prefrontal/frontal areas found in the American group
could be due to the increased emphasis that this culture puts on independent thinking and analyt-
ical processing, whereas East Asians process information more holistically [16, 22].

Although these studies document differences in structural regions across Americans and
East Asians, the literature is sparser in terms of linking these differences in structure to perfor-
mance on behavioral task, beyond consideration of language (e.g., [26, 27]). Some studies
investigate specific regions associated with specific processes. For example, larger gray matter
volumes in the parahippocampal place areas for East Asians than European Americans are
thought to reflect scene processing [28]. Larger volume in the temporo-parietal junction for
East Asians compared to European Americans is thought to reflect cultural differences associ-
ated with perspective taking and mentalizing [29]. Considering interdependent vs indepen-
dent self-construal styles, higher independence scores have been associated with larger gray
matter volume in the ventral medial prefrontal cortex (vmPFC) [30, 31], right dorsolateral pre-
frontal cortex (dIPFC), right rostral lateral prefrontal cortex (rIPFC) [30], and the orbitofrontal
prefrontal cortex (OFC) [31, 32]. Higher interdependence scores were linked to larger grey
matter volume in the right TPJ [29], and reduced OFC volume [31, 32].

Relationship between prefrontal regions and neuropsychological test
performance

Although research linking cultural differences in brain structure to performance on standard-
ized neuropsychological tasks is rare, there is more literature that considers these relationships
without culture. Episodic memory has been associated with several neural areas, and the pres-
ent study will focus on regions of prefrontal cortex. The California Verbal Learning Test
(CVLT) is a commonly used neuropsychological measure assessing long-term memory [4].
The task invokes many processes, including organization (semantic and subjective), context
memory, memory search (recall and recognition) and response bias (yes/no recognition) [33].
Frontal regions have been implicated in task performance; frontal lobe damage is associated
with impaired list learning and poor free recall performance on the CVLT [33, 34]. Interac-
tions between the medial temporal lobes (MTL) and the frontal lobes are crucial for normal
memory function [33], with prefrontal regions supporting strategic processes and the supervi-
sion and selection of appropriate strategies in memory (e.g., categorization in the CVLT; [34].
Patients with injuries in the frontal lobe are impaired in this organizational skill, but when
given instructions to apply the strategy, they performed normally on recall tests [34-37].
Aside from studies with patients, volumetric differences in PFC regions in healthy control
participants may reflect differences in memory strategies. Thickness in the dorsolateral pre-
frontal cortex (dIPFC) has been associated with memory performance on the delayed recall
portion of the CVLT [38]. This region is involved in the formation of long-term memory
(LTM) through strengthening associations among items in working memory [39]. However,
another study implicated frontal regions in organization, finding that reductions in volume of
the left superior and inferior frontal lobe and right dIPFC were associated with increased
semantic clustering on the CVLT [40], whereas increased activity in the left PFC was associ-
ated with recognition of familiar words on the CVLT [41]. Cortical thickness of the anterior
midcingulate cortex extending into the paracingulate cortex and rostral medial prefrontal cor-
tex have also been associated with higher scores on the delayed recall portion of the CVLT
[38]. Moreover, damage to the medial prefrontal cortex (mPFC) has been associated with
impairment in performance on the CVLT [42, 43]. The integrity of the anterior midcingulate,
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a subdivision of the anterior cingulate cortex [44], has also been positively correlated with cog-
nitive control, which in turn enhances memory performance [45, 46]. This region contributes
to allocating of control resources appropriately to a given task [47]. The present study focuses
on the volume of these prefrontal regions, based on the past findings of associations of these
regions with CVLT performance.

Linking the CVLT to cultural brain differences

Culture may be one source of individual differences that impacts how volumes of brain regions
relates to performance on the CVLT. As Easterners and Westerners differ in their use of cognitive
strategies and their recruitment of brain networks, this could impact the volume of brain struc-
tures (e.g., [22, 23, 25]). Notably, several of the brain areas showing cultural differences in struc-
ture are also associated with performance on the CVLT as well as more broadly in memory
encoding and retrieval. These broadly include the dIPFC, mPFC, and cingulate cortex. The
vmPFC was found to be larger in Westerners [30, 31]. Damage to this area and the basal forebrain
have been associated with impairment on the CVLT due to deficits in drawing direct and indirect
relationships between elements [48]. Another structure found to be larger in Westerners is the
rostral medial PFC (rmPFC) [22], a region that was also linked to increased performance on the
CVLT [38]. The anterior midcingulate cortex is associated with higher scores on the CVLT [38],
an area near the cingulate regions that was larger in East Asians than Westerners [23]. This region
also has functional connections to the paracingulate [46], another brain region often observed to
be larger in East Asians [23]. Finally, in general it was found that the dIPFC tends to be larger in
Westerners [30]. Volume of the dIPFC is highly variable in terms of individual memory strategies
and performance on the CVLT [38, 40]. Overall, differences within these regions may underlie
cultural differences in CVLT performance, reflecting differences in orientation and memory strat-
egies across cultures [49]. This is consistent with the fact that individual differences in brain activ-
ity and memory performance reflect differences in self-initiated encoding strategies [50].

Predictions. In this study, we first investigate the relationship between CVLT scores and
gray matter volumes, without regard to culture. We chose to focus on volume because the mea-
sure takes into account both cortical thickness and surface area [51], and the measure is gener-
ally more reliable than cortical thickness alone [52]. For hypothesis 1 (H1), we predict that
higher scores on the CVLT will be related to larger gray matter volumes in the superior frontal
and rostral middle gyrus (dIPFC), the lateral orbitofrontal and medial orbitofrontal gyri
(vmPFC), the rostral anterior cingulate (rmPFC) and the caudal anterior cingulate (anterior
midcingulate cortex), as these areas have been implicated in memory performance on the
CVLT and show a wide degree of morphological variation in terms of memory strategies. Sec-
ond, we investigate whether culture modifies the relationship between CVLT scores and these
gray matter volumes. For hypothesis 2 (H2), we predict that there will be cultural differences
within the above stated brain regions associated with scores on the CVLT. These predictions
are motivated based on previous findings of cultural differences in gray matter volumes likely
to be implicated in CVLT performance. To converge with prior studies that compared the vol-
ume of regions across cultural groups [22-25] without considering the relationship with
CVLT scores, we will also conduct exploratory analyses comparing volumes of cortical regions
across cultures.

Methods
Participants

A total of 115 Taiwanese and US young adults, ages 18-30, completed the study between
August 2019 and August 2022 and were included in the study. All participants were right-
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handed and had no previous history of neurological or psychological disorders. Fifty-seven partic-
ipants (28 females; 29 males) were Taiwanese young adults, with an average age of 23.26 (SD =
2.40). They were recruited from the National Taiwan University (NTU) and Taipei City area in
Taiwan. Fifty-eight participants (30 females, 28 males) were US young adults, with an average age
of 21.31 (SD = 3.23). They were recruited from Brandeis University and the surrounding Boston
area. All participants were native to their respective country and had not lived outside of their
country for more than two years. Each participant provided written informed consent before the
start of this study. Protocols (#19034r) were approved by the Brandeis University Institutional
Review Board and NTU Hospital Research Ethics Committee. Participants were compensated for
their time. Although data had alphanumeric codes, primary experimenters had access to informa-
tion that could identify individual participants during and after data collection.

Neuropsychological assessment

A battery of neuropsychological tests was administered to all participants in their native lan-
guage. The specific neuropsychological measure that was the focus of this analysis was the Cali-
fornia Verbal Learning Task II (CVLT-II) [53]. This is a commonly used neuropsychological
test to measure episodic verbal learning and memory [54]. During learning, the experimenter
reads a list of 16 words from 4 semantic categories (List A). The words were repeated over five
learning trials; after each iteration the participant was asked to recall as many words as possi-
ble. An interference list trial (List B) was read immediately after the fifth trial, and participants
were asked to recall as many words as they could remember from List B only. Following this,
the participants were asked to recall the items on List A in short and delayed (approx. 20 min-
utes) and cued recall trials. In the cued recall trials, specific categories were given (animals, fur-
niture, travel, and vegetables) and participants were to recall the words from List A that fit into
those categories. Lastly, participants completed a delayed recognition test. For the present
study, the outcome variables of interest for this study are the raw scores on a) learning trial 1
and b) long delayed free recall. Performance on these measures have been related to the
selected brain structures in previous literature [38, 41]. Scores on trial 1 may also relate to
scores on the long delayed free recall trials, indicating encoding differences [55]. In addition,
cultural groups differed the most on learning trial 1 (see Results; S1 Table includes scores and
exploratory comparisons across the cultural groups on the remainder of the CVLT measures).

Brain imaging acquisition

MRI data was collected using identical 3T Siemens MAGNETOM Prisma systems with 64
channel head coils located at the Imaging Center for Integrated Body, Mind and Culture
Research, National Taiwan University, Taipei, Taiwan, and the Center for Brain Science, Neu-
roimaging facility, Harvard University, Cambridge, MA, USA. Calibration analyses were con-
ducted prior to data collection, testing the same individuals on both scanners in order to
establish the comparability of functional data across the scanners. Results showed that global
signal did not differ across scanners and activation differences only occurred in visual cortex,
consistent with differences in the luminance of the screen [56]. A standardized high resolution
T1-weight magnetization-prepared rapid gradient echo image (multi-echo MPRAGE: [57])
was obtained for gray-white matter with 176 sagittal slices (voxel size 1.0 x 1.0 x 1.0 mm),
FOV =256 x 256 mm, TR = 2530.0 ms, short TE = 1.69 ms, long TE = 7.27 ms, and FA =7".

Analysis of structural MRI data

All MRI data was analyzed using FreeSurfer 6.0.0 (http://surfer.nmr.mgh.harvard.edu/); this
text is based on standard methods language provided by FreeSurfer. Imaging processing
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included motion correction, averaging [58] of multiple volumetric T1 weighted images, skull-
stripping [59], Talairach transformation, segmentation of the subcortical white/gray matter
volumetric structures [60, 61], intensity normalization [62], tessellation of the gray/white mat-
ter boundaries, topology correction [63, 64], and surface deformation to optimally place the
gray/white and gray/cerebrospinal fluid borders [65-67]. Once reconstruction was complete,
the cerebral cortex was parcellated in respect to individual gyral and sulcal patterns [61, 68].
This method uses both intensity and continuity information from the entire three-dimensional
MR volume in segmentation and deformation procedures to produce representations of corti-
cal thickness, calculated as the closest distance from the gray/white boundary to the gray/CSF
boundary at each vertex on the tessellated surface [67]. Procedures for the measurement of
cortical thickness have been validated against histological analysis [69] and manual measure-
ments [70, 71]. Freesurfer morphometric procedures have been demonstrated to show good
test-retest reliability across scanner manufacturers and across field strengths [72, 73]. Auto-
matic parcellations were visually inspected and manually corrected for each of the
participants.

Analysis of Regions-of-Interest (ROI)

The Desikan-Killiany-Tourville (DKT) atlas [74] was used for volumetric measurements. We
chose regions in accordance with the DKT atlas protocol that best represented the regions
implicated in task performance in prior studies. In total, we had twelve ROIs (six in each hemi-
sphere). Of the region options available in the DKT atlas we chose the rostral middle and supe-
rior frontal gyri, corresponding to the dIPFC. In addition, we selected the lateral orbitofrontal
and medial orbitofrontal gyri, corresponding to the vmPFC. These ROI options available
through FreeSurfer best represented the regions described in the literature; each ROI was ana-
lyzed separately rather than combined into a larger region (e.g., left lateral and medial orbito-
frontal gyri were two separate ROIs rather than combined into one left vmPFC ROI). Further,
the rostral anterior cingulate (rACC) was selected as the region that best encompassed the
location of the rmPFC as discussed in Sun et al [38]. Finally, the caudal anterior cingulate
(cACC) was chosen to best represent the anterior midcingulate.

Analytic plan

Analyses of the a priori ROIs were preregistered: https://aspredicted.org/SVP_CKI. Since the
pre-registration, data from an additional 7 American participants were collected and included
in the analyses. Initially, we only conducted the analyses that were pre-registered to test
hypotheses (i.e., all analyses are reported in the manuscript). Additional exploratory analyses
are included in order to more fully characterize the dataset (e.g., exploratory tests of the rela-
tionship between CVLT scores and gray matter volume across the whole brain; comparisons
of cortical volumes without regard to CVLT performance; all CVLT scores). These are labeled
as “exploratory”, and not incorporated into the discussion section. The data were collected as
part of a larger project studying cognition and neural activity across cultures [75-77]. The
sample size was based on estimates needed for the primary fMRI study [76]. All young adult
participant data available were included in the present analyses of structural MRI data. Data
are available at: https://osf.io/zfd9e/

Outliers were defined as values that were outside a range of 3 standard deviations. Eight
participants were identified as outliers based on their scores and volumes (i.e., for values on
CVLT learning trial 1, CVLT long delayed free recall (LDFR), left and right superior frontal
gyrus, left and right cACC). Scores and volumes deemed outliers were only removed from
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analyses that included the outlier values, but the participants were included in all other analy-
ses. Outliers were not identified or removed for exploratory analyses.

Memory scores on the CVLT learning trial 1 and long delayed free recall (LDFR) were ana-
lyzed using an independent two tailed t-test to determine whether there were cultural differ-
ences in memory performance. Exploratory analyses comparing volumes of brain regions
across cultures were conducting using two tailed independent samples t-tests.

The relationships between prefrontal gray matter regions and memory scores were tested
using linear regression analyses. For Hypothesis 1, we were interested in the relationship
between the volume of ROIs and memory scores. For Hypothesis 2, we then addressed if cul-
ture affected the relationship between the volume of ROIs and memory scores. Separate linear
regressions were conducted with learning trial 1 and LDFR as dependent variables and the
ROI volumes as independent variables. Although we did not pre-register it, we also ran analy-
ses with sex as a covariate. All the significant effects reported here persist when sex is included
as a covariate in the analyses. It was also necessary to adjust for head size by accounting for
intracranial volume (ICV) in the analyses. We had initially intended to include ICV as a covar-
iate in the two models; for H1: CVLT score = gray matter volume + ICV and H2: CVLT
score = culture * gray matter volume + ICV respectively. However, the analyses revealed that
ICV effects differed across analyses depending on brain region. For this reason, deviating from
the original pre-registration, we opted to first derive ICV adjusted ROI volumes to account for
the differential influence of head size specific to each ROI [78, 79], each ROI was adjusted
using the same global average ICV (i.e., across all participants), as in a previous cross-cultural
study [22]. Specifically, we adjusted ROI volumes using the following equation:

Volume,,; = Volume,,, — b(ICV — Mean ICV)

Where b is the slope of the linear regression between Volumeg,,, and ICV. The adjusted
volumes for each region were then used in analyses. Two regressions were conducted for each
of the two dependent variables and an interaction term for ROIs x Culture for each corre-
sponding brain region was computed.

Exploratory comparisons of volumes across cultures. We supplemented our analyses
focused on the gray matter volumes we predicted would be associated with CVLT performance
by conducting exploratory analyses comparing volumes of other cortical regions across cul-
tures both with the CVLT to assess memory performance and without. The analyses that do
not consider performance on the CVLT allow for comparisons of our samples with findings
from prior studies focused only on comparisons of volume across cultures [22-25], as well
allowing for tests of the robustness of cultural differences. To do this, we selected a whole brain
vertex-based analysis approach. Analyses were conducted using Freesurfer’s mri_glmfit to test
for the relationship between culture and gray matter volume. Note that for this analysis, Tai-
wanese participants were coded as 1, Americans were coded as -1. Surfaces were resampled
into a common space (fsaverage) and smoothed with a 10mm full width half maximum kernel
(FWHM). Whole brain analyses were corrected for multiple comparisons using Monte Carlo
simulations with cluster forming threshold of p < .0001, and cluster wise p < .05. ICV cen-
tered was used as a nuisance variable in this analysis.

Results
CVLT performance

We first assessed cultural differences in memory performance on CVLT learning trial 1 and
long delayed free recall (LDFR) scores. The American participants’ performance was higher
than Taiwanese participants’ on learning trial 1 (US: M = 8.35, SD = 2.10; Taiwanese:
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M =7.28; SD = 2.18), and this difference reached significance (#(112) = 2.66, p < .01, Cohen’s
d = 2.14). However, there was no significant difference on the LDFR (#(111) = .38, p = .70),
with both groups performing similarly (US: M = 14.30, SD = 1.80; Taiwanese: M = 14.16,

SD = 1.99). Note that high performance on the measure may limit the sensitivity of this mea-
sure due to restricted range.

Comparison of brain volumes across cultures

In comparing the gray matter volume for each of the 12 pre-registered prefrontal regions,
using the volumes adjusted for ICV, there was a significant difference between cultures within
the bilateral superior frontal gyrus, bilateral rostral middle gyrus and the right rostral anterior
cingulate. Results are shown in Table 1. Taiwanese young adults had smaller left and right
superior frontal volumes compared to US young adults. In contrast, Taiwanese young adults
had larger left and right rostral middle frontal and larger right rACC volumes than Americans.

Relationship between prefrontal volumes and CVLT performance

We next analyzed the association between prefrontal volumes and memory performance, cor-
responding to our first hypothesis. Linear regressions using the adjusted volumes were run
with CVLT learning trial 1 scores and LDFR scores as the outcomes. The results revealed a

Table 1. Independent samples t-test of cultural differences in the gray matter volume of brain regions.

Volume (mm?>) Culture N M SD t 4
L uUsS 57 9494.08 623.09 0.08 0.93
Lateral Orbitofrontal ™ 57 9483.14 770.11
R uUsS 57 9031.57 767.44 -1.32 0.18
™ 57 9220.16 753.97
L US 57 12203.18 1415.61 -2.81 <.01**
Rostral Middle Frontal ™ 57 12917.88 1292.44
R US 57 11944.24 1651.61 -2.70 <.01**
™ 57 12689.61 1266.2
L UsS 56 26325.35 1805.29 2.49 0.01*
Superior Frontal ™ 57 25469.35 1833.59
R UsS 56 28978.34 1727.23 3.51 <.01**
™ 57 27809.11 1807.92
L uUsS 57 4776.29 396.25 -1.83 0.06
Medial Orbitofrontal ™ 57 4916.75 421.25
R uUsS 57 4557.85 449.35 -0.02 0.98
™ 57 4559.9 413.08
L UsS 57 3697 404.47 -1.88 0.06
Rostral Anterior ™ 57 3845.82 439.4
Cingulate Cortex R UsS 57 2522.7 396.02 -2.56 0.01*
™ 57 2720.53 427.93
L UsS 56 3220.12 371.75 -1.22 0.22
Caudal Anterior ™ 57 3314.79 446.04
Cingulate Cortex R Us 57 2198.17 447.82 -1.30 0.19
™ 55 2311.98 478.49

Note: Sample sizes vary due to the exclusion of outliers; US = Americans; TW = Taiwanese

*Indicates significance at p < .05

https://doi.org/10.1371/journal.pone.0298235.t001
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CVLT Trial 1
CVLT Trial 1
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Left rACC Volume (mm?*) Right rACC Volume (mm?)
Fig 1. Relationship between left and right rACC volume and performance on CVLT trial 1.
https://doi.org/10.1371/journal.pone.0298235.9001

significant relationship between the bilateral rostral anterior cortex and learning trial 1 scores.
Larger volumes in the left and right rACC regions were associated with lower scores on trial 1
of the CVLT, as displayed in Fig 1. No other significant effects were found for trial 1 or LDFR
scores; see Table 2 for all results. The overall R* for both models were .08 and .05 respectively.

Cultural differences in the relationship between brain volume and CVLT
performance

We next examined the interaction between culture and the gray matter volume of regions on
CVLT trial 1 and LDFR scores. For trial 1, there was a significant main effect of culture on

Table 2. Regression analysis: Relationship between prefrontal volumes and memory Outcomes (H1).

Volume (mm°) Trial 1 LDFR
B t ) B t P
Lateral Orbitofrontal Left 0.08 0.85 0.39 0.15 1.64 0.10
Right 0.13 1.39 0.16 0.11 1.19 0.23
Rostral Middle Frontal Left -0.08 -0.9 0.36 -0.02 -0.29 0.76
Right -0.11 -1.18 0.24 -0.05 -0.57 0.57
Superior Frontal Left 0.15 1.58 0.11 0.15 1.65 0.10
Right 0.1 1.06 0.29 0.12 1.25 0.21
Medial Orbitofrontal Left -0.07 -0.8 0.42 0.07 0.79 0.42
Right -0.11 -1.22 0.22 0.05 0.57 0.56
Rostral Anterior Left -0.21 -2.26 0.02* 0.08 0.88 0.37
Cingulate Cortex Right -0.23 -2.58 0.01* -0.14 -1.48 0.14
Caudal Anterior Left -0.14 -1.49 0.14 -0.07 -0.73 0.46
Cingulate Cortex Right 0.02 0.21 0.83 0.07 0.8 0.42

* Indicates significance at p < .05

https://doi.org/10.1371/journal.pone.0298235.t1002
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Table 3. Tests of the effects of culture and ROI on CVLT Trial 1. Values are displayed for the contribution of the gray matter volume of the region, the effect on culture,
and the interaction of the region x culture (H2).

Region:

Left Hemisphere

Lateral Orbitofrontal

Culture

Lateral Orbitofrontal X Culture
Rostral Middle

Culture

Rostral Middle X Culture
Superior Frontal

Culture

Superior Frontal X Culture
Medial Orbitofrontal

Culture

Medial Orbitofrontal X Culture
rACC

Culture

rACC X Culture

cACC

Culture

cACC X Culture

* Indicates significance at p < .05

B

0.11
0.13
-0.36
0.06
0.71
-0.98
-0.04
-2.19
1.95
-10
-0.97
0.76
-0.15
-0.03
-0.17
-0.08
-0.02
-0.21

https://doi.org/10.1371/journal.pone.0298235.t003

t P Region: B t P
Right Hemisphere

0.76 0.44 Lateral Orbitofrontal 0.07 0.61 0.54
0.1 0.91 Culture -1.28 -1.61 0.24
-0.28 0.77 Lateral Orbitofrontal X Culture 1.04 0.93 0.35
0.52 0.59 Rostral Middle -0.01 -0.1 0.92
0.82 0.41 Culture 0.27 0.34 0.73
-1.09 0.27 Rostral Middle X Culture -0.51 -0.61 0.54
-0.32 0.74 Superior Frontal -0.18 -1.31 0.19
-1.66 0.09 Culture -3.34 -2.26 0.02*

1.5 0.13 Superior Frontal X Culture 3.06 2.07 0.04*
-0.73 0.46 Medial Orbitofrontal -0.09 -0.72 0.47
-0.87 0.38 Culture -0.02 -0.02 0.98
0.67 0.5 Medial Orbitofrontal X Culture -0.21 -0.21 0.83
-1.12 0.26 rACC -0.17 -1.29 0.19
-0.04 0.96 Culture -0.1 -0.17 0.86
-0.2 0.83 rACC X Culture -0.09 -0.14 0.88
-0.57 0.57 cACC 0.13 0.99 0.32
-0.03 0.97 Culture 0.17 0.37 0.7
-0.27 0.78 cACC X Culture -0.43 -0.88 0.38

memory performance, and a significant interaction between culture and right superior frontal
gyrus; see Table 3. The interaction is shown in Fig 2. To further understand this interaction,
we calculated correlations between CVLT trial 1 scores and volume of the right superior fron-
tal gyrus for each cultural group (Taiwanese: (57) = .24, p = .08; Americans: r(55) = -.05, p =
.74). Directly comparing the values using a Fisher r-to-z transformation indicated that the cor-
relations did not significantly differ between the two groups, z = 1.48, p (two-tailed) = .14. No
other significant interactions were observed for trial 1. For LDFR, although there was only a
trend towards an interaction (p = .07) between right rACC volume and culture, the main effect
for right rACC volume reached significance when culture is included in the model; see

Table 4.

Exploratory comparisons of brain volumes across cultures

To gain additional understanding of the impact of cultural differences on CVLT performance,
we conducted additional exploratory analyses. We first conducted whole-brain analyses on the
remaining regions from the DKT atlas, testing interactions between culture and gray matter
volume in the regions that were not selected a priori, going beyond the pre-registration. To
test this, we used the same approach that was used in the ROI analysis for hypotheses 1 and 2,
implementing the same corrections for intracranial volume, running individual models for
each brain structure in each hemisphere, and testing for effects for CVLT Trial 1 and LDFR.
The regions that reached significance are listed in S2 and S3 Tables. To maintain consistency
with the initial ROI analysis, corrections for multiple comparisons were not made.

In addition, exploratory tests of cultural differences in volumes using a vertex approach
identified some cortical volumes that differed across cultures, as shown in Table 5 and Fig 3.
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Fig 2. Interaction between culture and right superior frontal volume and performance on CVLT trial 1.

https://doi.org/10.1371/journal.pone.0298235.g002

Volumes were larger for Americans compared to Taiwanese in the bilateral superior frontal
gyrus and bilateral lateral occipitofrontal gyrus. Taiwanese participants had larger volumes in
the bilateral rostral middle frontal gyrus, bilateral inferior temporal gyrus and the right
precuneus.

Discussion

This study aimed to address two questions. Hypothesis one posited that higher scores on the
CVLT (i.e, learning trial 1; LDFR) would be related to larger volumes in regions of the pre-
frontal cortex (i.e., superior frontal and rostral middle gyri, lateral orbitofrontal and medial
orbitofrontal gyri, rostral and caudal anterior cingulate). The second hypothesis investigated
whether there were cultural differences in the relationship between CVLT scores and brain
volumes for the prefrontal regions listed above. We focused on twelve anatomically defined
prefrontal regions, as prefrontal cortex has been implicated a wide variety of individual
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Table 4. Tests of the effects of culture and ROI on CVLT LDFR. Values are displayed for the contribution of the gray matter volume of the region, the effect of culture,

and the interaction of the region x culture.

Region Left p t p Region Right p t p
Lateral Orbitofrontal -0.06 0.44 0.65 Lateral Orbitofrontal 0.01 0.14 0.88
Culture -1 -0.75 0.44 Culture -1.26 -1.1 0.27
Lateral Orbitofrontal X Culture 0.97 0.73 0.46 Lateral Orbitofrontal X Culture 1.24 1.06 0.28
Rostral Middle -0.07 -0.59 0.55 Rostral Middle -0.11 -0.9 0.36
Culture -0.61 -0.67 0.50 Culture -0.72 -0.86 0.39
Rostral Middle X Culture 0.6 0.64 0.51 Rostral Middle X Culture 0.72 0.84 0.40
Superior Frontal -0.01 -0.1 0.91 Superior Frontal 0.06 0.43 0.66
Culture -2.3 -1.7 0.09 Culture -0.8 -0.51 0.61
Superior Frontal X Culture 2.28 -1.7 0.09 Superior Frontal X Culture 0.79 0.51 0.60
Medial Oribitofrontal 0.02 0.2 0.83 Medial Orbitofrontal -0.09 -0.72 0.47
Culture -0.66 -0.57 0.56 Culture -1.73 -1.7 0.09
Medial Orbitofrontal X Culture 0.62 0.53 0.59 Medial Orbitofrontal X Culture 1.71 1.68 0.09
rACC 0.03 0.25 0.80 rACC -0.32 -2.28 0.02*
Culture 0.5 -0.58 0.56 Culture -1.08 -1.75 0.08
rACC X Culture 0.47 0.52 0.60 rACC X Culture 1.15 1.77 0.07
cACC -0.1 -0.71 0.47 cACC -0.03 -0.26 0.78
Culture -0.35 -0.43 0.66 Culture -0.57 -1.19 0.23
cACC X Culture 0.32 3.8 0.70 cACC X Culture 0.58 1.64 0.24

* indicates significance at p < .05

https://doi.org/10.1371/journal.pone.0298235.t004

differences in terms of memory strategies, including on the CVLT [40], and cultural differ-
ences [22, 23, 25].

For hypothesis 1, assessing the relationship between prefrontal volumes and memory, the
volume of one region—the rACC-was significantly related to memory performance. These
findings build upon those of previous studies that found that thickness in this region bilaterally
(labeled rmPFC in their study) predicted higher scores on the LDFR in super-agers [38]. In
fact, this region was among several for which cortical thickness was equivalent when compar-
ing super-agers to young adults. This could indicate that memory performance relies on the
structural integrity of the region [38]. Interestingly, in contrast to the previous study, we found
a negative relationship among volumes in the right and left rACC for trial 1 scores; in our

Table 5. Whole brain vertex based exploratory analysis (Volume).

Annotation Max VitxMax Size(mm®) X Y z CWP
AM>TW L Superior Frontal -4.348 121575 1029.39 -7.7 56.3 14.7 0.01
R Superior Frontal -4.761 30286 955.29 6.9 35.8 43.1 0.02
L Lateral Occipital -5.782 14447 998.72 -16.5 -95.6 -0.9 0.01
R Lateral Occipital -4.69 161707 3107.97 20.6 -96.3 -0.4 <0.01
TW>AM L Rostral Middle Frontal 5.547 56319 1173.43 -32.1 36 20.7 <0.01
R Rostral Middle Frontal 3.111 115270 1666.36 40 42.7 18.2 <0.01
L Inferior Temporal 5.573 69886 1045.5 -46.4 -10.2 -28.2 <0.01
R Inferior Temporal 4.535 92024 1002.63 47.1 -8.7 -27.8 0.01
R Precuneus 3.755 78098 839.39 8 -64 33.6 0.04

All cluster-wise p-values (CWP) significant at p < .05

https://doi.org/10.1371/journal.pone.0298235.t1005
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Fig 3. Clusters of differences in gray matter volume among American and Taiwanese young adults. Note: Clusters
that are larger for the Taiwanese are displayed in blue and those larger for Americans are displayed in red. For the
color coding, a -log10(pvalue) of 5.00 corresponds to p < .0001 and a -log10(pvalue) of 1.67 corresponds to p < .05.

https://doi.org/10.1371/journal.pone.0298235.9003

study, increased volume was associated with lower scores. One critical difference across the
studies is that Sun et al [38] studied older adults whereas our sample consists of younger adults.
Regions of prefrontal cortex continue to develop into the 20s [40, 80]; the present results may
suggest that the thinning of prefrontal cortex in early adulthood is associated with higher levels
of memory performance, perhaps through greater use of strategies as the cortex develops. In
contrast, loss of volume in prefrontal regions in late adulthood is associated with declines in
cognition. Additional research is needed with longitudinal and lifespan samples to investigate
the nature of relationships developmentally as well as the consistency of relationships over
time within individuals. One difference across the two studies is that Sun et al [38] examined
relationships with CVLT scores using a measure of cortical thickness whereas our analyses
used volumetric measurements that combine both cortical thickness and surface area [81].
Although one might expect the two measures to have similar relationships with task perfor-
mance, surface area may dominate volume measures as both are highly correlated with ICV
while cortical thickness is not [82], and studies have shown that these two measures have an
inverse relationship, particularly in the medial prefrontal cortices where less surface area indi-
cates more thickness and vice versa [83]. Surface expansion is known to be driven by cellular
events (e.g., synaptogenesis) during development [84], but the cause of reduction in adulthood
is unknown [83], although increases in surface area as a benefit to cognition may be region
specific [85]. This could, in part, explain our results for an increase in performance associated
with reduced volume. For instance, a negative association between the right rACC and work-
ing memory has been demonstrated previously, whereas larger surface area in the left rACC
has been related to better neurocognition [86]. Therefore, the different measures could under-
standably produce varying results and could be domain- and region-specific. Further, thinned
cortices in certain cases have been associated with increased cognitive function (for a review,
see [87]). Nonetheless, the results contribute to the literature that the volume of the rACC may
have implications for memory performance.

For hypothesis 2, that cultures differed in the associations between volumes and memory
performance, the relationship between right superior frontal gyrus and CVLT trial 1 perfor-
mance differed across cultures. Although this interaction emerged as significant in the overall
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analyses, follow-up analyses to characterize the nature of the interaction did not reach conven-
tional levels of statistical significance. For Taiwanese, there is a trend for a positive relationship
between the gray matter volume of right superior frontal cortex and memory performance.
This pattern contrasts with that of the Americans, for which there was not a clear trend for a
relationship between gray matter volume of right superior frontal cortex and memory perfor-
mance. The different patterns across the two groups should be interpreted with caution due to
the lack of significant differences in follow-up analyses of the correlation values. If the pattern
is replicated in larger samples or samples with more variation in prefrontal gray matter vol-
umes (e.g., older adults), the finding could indicate that larger gray matter volumes in right
superior frontal gyrus are associated with better performance in Taiwanese but not in Ameri-
cans. Potential cultural differences in the relationship between gray matter and trial 1 scores
could reflect variation in cognitive strategies. For instance, given that trial 1 of the CVLT isa
learning task with a short delay before retrieval, strongly associated with attention [88], this
finding could potentially reflect the differences these two cultures demonstrate in allocating
attention. For instance, in this study we considered the superior frontal areas a part of the
dIPFC, which has been associated with organization of information in working memory, and
subsequent memory performance, in particular, under retrieval conditions that target memory
for association between items (for review; see [89]). Because Americans perform better on
average than Taiwanese on the 1 learning trial, it may be the case that brain regions linked to
attention and organization play a more substantial role for the Taiwanese, such that those with
larger volumes in these regions perform better than those with smaller volumes, whereas the
reverse is true for Americans. Furthermore, because this region is a part of the dIPFC, the
region contributes to a variety of memory strategies and performance on the CVLT [38, 40].
Future research could further probe the strategic aspects of memory using the CVLT, explicitly
assessing the use of categories as a recall strategy. Such analyses may be most promising in
comparisons of older adults, based on prior findings cultural difference in the use of a cluster-
ing strategy in free recall memory emerged more strongly in comparisons of older, more than
younger, American and Chinese adults [13]. Research with older adults may also better sup-
port detection of relationships between volumes and performance on the LDFR portion of the
CVLT, as scores were high for the present samples of young adults.

Although the present study focused on relationships between gray matter volumes and per-
formance on a neuropsychological task investigating memory, past cross-cultural studies
largely focused on comparing the volume of regions without considering the relationship to
task performance. Our exploratory analyses comparing volumes across cultures—apart from
considering relationships with CVLT scores—found that the volume of bilateral superior fron-
tal gyrus was larger for Americans than Taiwanese converges with prior comparisons of West-
erners and East Asians [23, 25]. Similarly, our finding that the volume of right rACC was
larger in Taiwanese than Americans converges with prior findings regarding the cingulate
[23]. Cultural differences in bilateral rostral middle frontal cortex, however, did not emerge in
these prior papers. Additional exploratory analysis using a vertex analysis approach replicated
the above findings, in that American young adults have significantly more gray matter volume
in bilateral superior frontal cortex and Taiwanese have larger volumes in bilateral rostral mid-
dle frontal cortex. Outside of frontal regions, Americans had larger volumes in bilateral lateral
occipital gyrus compared to East Asians, in line with prior findings [90]. Converging with
prior studies showing that East Asians have larger volumes in temporal areas than Americans
[23, 25], East Asians had larger volumes in bilateral inferior temporal cortex, as well as in right
precuneus (See Table 5). This overall pattern of convergence in patterns across studies occurs
despite methodological differences (e.g., volumetric analyses vs. VBM). Future comparisons of
samples drawn from multiple Eastern and Western populations and use of multiple methods
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would be helpful to assess the robustness and consistency of volumetric differences across spe-
cific regions, particularly in terms of the dissociation in the effects of culture on frontal versus
temporal and parietal regions. In addition, studies comparing cultures across age groups (e.g.,
[22]) would allow for comparisons across a wide range of volumes, as these can be differen-
tially impacted by aging.

Methodologically, the Freesurfer parcellations offer some advantages in that the method is
immune to differences in brain shape across different cultural groups. There are, however, sev-
eral limitations to the study. Although the sample sizes are on par with prior studies comparing
structural volumes across cultures (n = 50-60 participants per group), they could still be con-
sidered small for the comparison of effects related to performance and culture (e.g., [91]). Fur-
thermore, we did not adjust p values for multiple comparisons, potentially running the risk of
false positives. Replication of results in larger samples, as well as samples with more variability
in gray matter volume and performance on the CVLT, such as older adults, will be important
to validate the results. Although samples were well-matched on many dimensions, including
the lack of psychiatric diagnoses, medications for such diagnoses, and alcohol/drug problems,
there may be cultural differences not picked up by these questions. For example, Americans
tend to report higher levels of depression, anxiety, and alcohol and drug use than East Asian
samples, even if these did not rise to the level of exclusions for our study. In addition, most of
the Taiwanese sample would be expected to be bilingual, whereas only seven of the American
participants reported high levels of proficiency in a 2" language. Although we did not assess
these factors, body mass index (BMI) would be expected to be higher in Americans than Tai-
wanese, and more of the males in the Taiwan sample would be expected to have military expe-
rience (although note that the required service can occur at varied ages throughout ones 20s
and may involve service in the public sector rather than military training).

Conclusions

The findings provide evidence that the volume of the rACC may be associated with memory
performance. Specifically, volume in the bilateral rACC predicted lower performance for the
CVLT trial 1. Culture moderates the relationship between the volume of the right superior
frontal gyrus and performance on trial 1, with a trend for a positive relationship for Taiwanese
but not Americans (although further research is needed to characterize the nature of the cul-
tural differences). Nonetheless, these findings are consistent with previous literature implicat-
ing culture in different relationships between behavior and brain structure [29, 30]. We extend
prior work focused on individual differences in social identity and orientation to performance
on neuropsychological tasks of cognitive function.
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