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ABSTRACT 
 

Self-incompatibility mechanism is critical for the reproductive success of many plant species, as 
they prevent self-fertilization and promote outcrossing. This review delves into the molecular basis 
of self-incompatibility in plants, aiming to unravel the intricate genetic and biochemical activities that 
underlie this essential biological phenomenon. The central focus of this review is on the 
mechanisms by which plants recognize and reject self-pollen, ultimately ensuring the maintenance 
of genetic diversity. Key components, including S-alleles, S-RNases, and receptor kinases, are 
explored in detail to elucidate their roles in self-incompatibility. Furthermore, this review discusses 
the implications of understanding these molecular mechanisms for both plant breeding and 
conservation efforts. Despite significant progress that has been accomplished in deciphering the 
molecular basis of self-incompatibility, there are still numerous unanswered questions and 
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promising avenues for future research. Topics such as the evolution of self-incompatibility systems 
and the potential applications of manipulating these mechanisms for crop improvement are 
highlighted. In conclusion, this review provides a comprehensive overview of the molecular 
intricacies behind self-incompatibility in plants. The insights obtained from this research not only 
contribute to our understanding of plant reproduction but also endure practical implications for 
agriculture and the preservation of plant biodiversity. 
 

 
Keywords: Self-incompatibility; S-RNases; S-haplotypes; self-pollen. 
 

ABBREVIATIONS 
 
SI  : Self-Incompatibility 
SSI  : Sporophytic Self-Incompatibility 
GSI  : Gamatophytic Self-Incompatibility 
PCD  : Programmed Cell Death 
SRK  : Serine/threonine Receptor Kinase 
MLPK  : M-Locus Protein Kinase 
KAPP  : Kinase-Associated Protein 

Phosphatase 
ROS  : Reactive Oxygen Species. 

 
1. INTRODUCTION 
 
Self-incompatibility is a crucial mechanism in 
many plant species that prevents self-fertilization. 
It arises from diverse factors, including 
morphological, genetic, physiological, and 
biochemical factors. This plant phenomenon has 
been observed in approximately 70 plant 
families, including important crop plants. 
 

Self-incompatibility is the inability of 
hermaphroditic plants with flowers to produce 
viable male and female gametes that can           
result in seed formation through self-pollination. 
The term "self-incompatibility" was coined              
by Stout in 1917, but its first documented 
instance dates back to the 18th century when 
Koelreuter observed it in Verbascum 
phoeniceum plants. 
 

This mechanism essentially creates a 
physiological barrier at some point between 
pollination and fertilization. It most commonly 
operates within the stylar region, acting as an 
effective biological sieve composed of diploid 
tissues. This sieve prevents the growth of pollen 
tubes and, consequently, the fusion of haploid 
gametes (both male and female), thus hindering 
fertilization. 
 

Two fundamental events that constitute the self-
incompatibility system in plants are: 
 

 Complementary Hypothesis: According 
to this hypothesis, self-incompatibility 

arises from the truancy of stimulation by 
the pistil on pollen growth in cases of like 
genotypes (e.g., S1S2 × S1S2). In simpler 
terms, self-incompatibility occurs when 
substances crucial for pollen tube 
penetration on self-pollination are lacking 
in either the pistil or the pollen. This means 
that in selfing situations, the pollen and/or 
pistil fail to produce the necessary 
substances for pollen germination and tube 
growth within the style and ovary. The 
complementary method depends on a 
fusion of dissimilar alleles in the pollen and 
the style.  

 Oppositional Hypothesis: According to 
this theory, similar alleles combine to 
produce an inhibitor that prevents pollen 
tubes from growing in the pistil (e.g., S1S2 
× S1S2). In essence, when like alleles 
interact, they generate a substance in 
pollen and pistil that interferes with the 
normal metabolic processes of the pollen 
grain or the pollen tube. This inhibitor can 
operate in several ways: (1) it may inhibit 
essential enzymes or auxins necessary for 
pollen tube growth, (2) it may obstruct the 
pollen tube membrane, or (3) it may inhibit 
an enzyme necessary for the penetration 
of the style. 

 
2. CLASSIFICATION OF SELF-

INCOMPATIBILITY 
 

Self-incompatibility can be categorized based on 
(1) flower morphology, (2) genes involved, (3) 
site of expression of self-incompatibility reaction, 
and (4) pollen cytology [1]. 

 
2.1 Heteromorphic System 
 
This system is characterized by variances in 
floral morphology, specifically in terms of stylar 
length and the position of the stamens. 
Heteromorphic self-incompatibility can be further 
divided into two main types namely Distyly and 
Tristyly. 
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2.2 Homomorphic System 
 

In homomorphic self-incompatibility, plants 
prevent self-fertilization based on physiological 
factors rather than distinct flower morphology 

(Table 1). This system is crucial in crop plants for 
controlled breeding, as it relies on specific genes, 
multiple alleles, and physiological mechanisms to 
inhibit self-pollination and maintain genetic 
diversity (Fig. 1). 

 
Table 1. Gametophytic Self-Incompatibility (GSI) vs. Sporophytic Self-Incompatibility (SSI) 

 

Characteristic Gametophytic Self-Incompatibility 
(GSI) 

Sporophytic Self-Incompatibility 
(SSI) 

1. Discovery Discovered by East and Mangelsdorf 
in Nicotiana sanderae in 1925 

First recognized by Hughes and 
Babcock (1950) in Crepis foetida and 
Gerstel (1950) in Parthenium 
argentatum 

2. Genetic 
Control 

Controlled by gametic genetics Controlled by the genotypes of the 
pollen-producing plant (sporophyte) 

3. Gene and 
Alleles 

Both systems involve a single gene 
denoted as "S" with multiple alleles 

Both systems involve a single gene 
denoted as "S" with multiple alleles 

4. Allele 
Interactions 

Alleles have individual actions in the 
style without interacting with each 
other 

Alleles may display dominance, 
individual action, or interaction in 
either pollen or style [43] 

5. Pollen-Ovule 
Interaction 

Pollen grains with the same alleles as 
the pistil result in pollen tube inhibition 

Inhibition of pollen germination or 
tube growth occurs on the stigma of 
the same flower 

6. Compatibility 
Levels 

Results in fully incompatible, half-
compatible and fully fertile crosses 

Exhibits a dominance hierarchy 
among alleles (e.g., S1 > S2 > S3 > 
S4) 

7. Recovery of 
Parental 
Genotypes 

Allows recovery of the male parent's 
genotype only in partially fertile 
crosses where one allele differs 

Allows some crosses to restore the 
parental genotypes 

8. Pollen Type Associated with plant species that 
typically have binucleate pollen 

Generally, involves trinucleate pollen 

9. Stigma 
Interaction 

Operates with wet stigma surfaces, 
with no direct interaction between one 
pollen grain and one surface cell 

Operates with a dry stigma where 
pollen grains react in a similar 
fashion from both heterozygous and 
homozygous plants 

10. Biochemical 
Substance 

The biochemical substance associated 
with the incompatibility response of the 
pollen develops late, during pollen 
formation 

The biochemical substance involved 
in the incompatibility response 
develops early, before pollen 
development 

 

 
 

Fig. 1. Types of Homomorphic self-incompatibility [1] 
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3. MOLECULAR BASIS OF SELF-
INCOMPATIBILITY 

 

Self-incompatibility (SI) is a crucial mechanism in 
plants that prevents inbreeding and promotes 
outcrossing [2,3]. It is primarily governed by a 
highly polymorphic locus of genes which is called 
S-locus (Fig. 2 and Table 2). While grasses have 
two unlinked SI loci, in dicots, SI typically maps 
to a single genetic locus. Recent molecular 
studies on various self-incompatible species 
within plant families like Brassicaceae, 
Solanaceae, and Papaveraceae have provided 
insights into the genetic complexity of the S-
locus. 
 

The pollen phenotype is determined by the S-
genotype of the diploid pollen-parent in 
sporophytic self-incompatibility (SSI) and by the 
genotype of the individual microspore in 
gametophytic self-incompatibility (GSI). Three 
self-incompatibility mechanisms have been 
characterized at the molecular level. SSI has 
been elucidated in Brassicaceae, and two distinct 
types of GSI have been extensively studied: S-
RNase-based self-incompatibility in Solanaceae 
and Rosaceae, and the Papaver system based 

on programmed cell death (PCD) [4-9]. Genes 
responsible for controlling self-incompatibility (SI) 
in grasses remain unidentified, despite efforts to 
pinpoint them through genome-wide association 
studies (GWAS) and physical mapping [10,11]. 
 

In these plant families, it's revealed that the S-
locus consists of at least two polymorphic genes, 
with one gene encoding the male compatibility 
determinant and another encoding the female 
compatibility determinant. These genes are part 
of a multi-gene complex at the S-locus, and they 
are inherited as a single unit, forming what is 
now known as 'S-haplotypes' [12]. The 
interaction between the male and female 
determinants encoded by the same S-haplotype 
triggers the SI response. 
 
This genetic complexity ensures that plants with 
the same S-haplotype are self-incompatible, 
preventing self-fertilization and promoting genetic 
diversity within populations. SI is a vital 
mechanism that plays a fundamental role in 
maintaining the genetic health and adaptability of 
plant species by encouraging cross-pollination 
and reducing the risks associated with 
inbreeding.

 

 
 

Fig. 2. Schematic Drawing of S-Locus compatibility reaction [15] 
 

Table 2. list of the identified female and male determinant genes 
 

Family Types of SI Male determinant Female determinant 

Brassicaceae SSI SP11/SCR SRK 
Solanaceae, Rosaceae, 
Scrophulariaceae 

GSI SLF/SFB S-RNase 

Papaveraceae GSI unknown S-protein 
 

Table 3. Achievements using self-incompatibility 
 

Crops Hybrids 

Cauliflower Pusa Hybrid-2, Snow Queen, Snow King, White Contessa. 
Cabbage BRH-5, H-44, H-43, Pusa Synthetic, Meenakshi. 
Chinese Cabbage Hamburg-3 
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4. SI IN BRASSICA 
 

In the Brassicaceae family, S-locus genes play a 
vital role in self-incompatibility mechanisms. 
These genes encode two essential components: 
Serine/threonine Receptor Kinase (SRK) and 
Cysteine-rich (SP11/SCR) proteins [13]. SRK 
functions as the female S-determinant, while 
SP11/SCR serves as the male S-determinant. 
These genes, along with a glycoprotein called 
SLG that may enhance self-incompatibility 
expression, are tightly linked and inherited as an 
S-haplotype [14]. 
 

The SRK protein is found on the plasma 
membrane of papilla stigmatic cells, while the 
small SP11 polypeptide is secreted from the 
anther tapetum, deposited onto pollen, and acts 
as an SRK ligand upon pollination [15]. 
Brassicaceae exhibit various S-haplotypes, each 
with complex hierarchical dominance 
relationships regulated by polymorphic small 
RNAs and their targets [16,17]. 
 

In simple cases, the interaction between SP11 
and SRK from the same S-haplotype triggers the 
rejection of self-pollen in the stigma papillary cell. 
Downstream events involve additional factors. 
The M-locus protein kinase (MLPK) interacts with 
SRK to transmit self-incompatibility signals, and 
the arm repeat-containing 1U-box type E3-ligase 
(ARC1) ubiquitinates and degrades the Exo70A1 
factor, which is crucial for pollen growth. 
Increased stigmatic ROS production occurs 
during incompatible interactions, while 
compatible interactions result in reduced ROS 
levels. Self-incompatibility (SI)-mediated ROS 
production depends on Rac/Rop GTPases 

signaling and a FERONIA (FER) receptor kinase 
homolog [18]. 

 
Conversely, other factors like thioredoxin h-like 1 
(THL1) and kinase-associated protein 
phosphatase (KAPP) act as negative regulators, 
inhibiting SRK and suppressing the self-
incompatibility response [19]. While the 
interaction between SRK and SP11 leads to an 
increase in cytosolic calcium levels in the papilla 
cell, the exact mechanism by which this calcium 
influx prevents self-pollen growth remains 
unclear [20]. 

 
5. SI IN SOLANACEAE  

 
S-RNase-based Gametophytic Self-
Incompatibility (GSI) is found in diverse plant 
families like Rosaceae, Solanaceae, 
Scrophulariaceae, and Rubiaceae. Recent work 
indicates that this system is also present in 
members of the Rutaceae (pummelo) family [21]. 
Despite using similar genes to determine pollen 
rejection specificity, the mechanisms differ 
across families. Nonetheless, the S-locus in 
these families typically contains at least two 
linked genes [22,23]. 

 
One gene encodes pistil-expressed glycoproteins 
known as S-RNases, which act as selective 
cytotoxins causing pollen rejection when its S-
haplotype matches either of the pistil's two S-
haplotypes [24,25,26]. The other gene is an F-
box protein (SLF or SFB, depending on the 
family) specifically expressed in pollen. 
Interactions between S-RNases and SRK leads 
to the homodimerization of eSRK [27,28]. 

 

 
 

Fig. 3. Receptor kinase-mediated signaling in stigma [15] 
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Fig. 4. S-RNases mediated degradation of pollen tube RNA [15] 
 
In Solanaceae and the Rosaceae tribe Maleae, 
multiple SLF genes (16 to 20) collectively 
contribute to pollen SI functions, while SI Prunus 
species use a single SFB gene for pollen-side 
function [29,30,31,32]. F-box proteins are known 
for their roles in the ubiquitin/proteasome 
pathway, and they interact with self/cross S-
RNases, suggesting cross S-RNases may be 
degraded through this pathway [33]. 
 

In Solanaceae, an array of SLF proteins 
collectively ubiquitinates and degrades non-self 
S-RNases, while self-S-RNases evade 
degradation due to non-recognition. This is 
known as the collaborative non-self-recognition 
model [34,35]. However, S-RNases can also be 
sequestered in the pollen tube endomembrane 
system, contributing to compatibility. 
 

In contrast, knock-out mutations in Prunus SFB 
genes lead to self-compatibility, contradicting the 
collaborative non-self-recognition model. An 
alternative model proposes that self-SFB 
protects self-S-RNases from a "general inhibitor" 
that detoxifies all self/non-self-S-RNases [36,37]. 
 

6. SI IN PAPAVERACEAE 
 

The physiology of Gametophytic Self-
compatibility (GSI) in poppy (Papaver rhoeas L.) 
stands out as one of the most comprehensively 
understood systems among all SI mechanisms. 
The S-locus in this plant comprises two closely 
linked genes responsible for encoding the female 
(PrsS) and male (PrpS) S-determinants [38]. 

PrsS is a small, highly variable protein secreted 
by the stigmatic papilla cells, and it acts as a 
signaling ligand. This ligand interacts with the 
pollen-expressed transmembrane protein PrpS. 
When self-interaction occurs, it sets off a series 
of responses within the plant, including an 
increase in cytosolic free calcium levels, an influx 
of calcium and potassium ions, and the 
generation of Reactive Oxygen Species (ROS) 
and nitric oxide. These processes, in turn, affect 
downstream targets [39,40]. 

 
Additionally, the soluble organic 
pyrophosphatase p26 and the MAP Kinase p56 
undergo rapid phosphorylation [32]. 
Concurrently, there is progressive 
depolymerization of the actin cytoskeleton, 
leading to PCD. Other PCD hallmarks, such as 
DNA fragmentation and caspase-like activity, are 
also observed as part of the self-incompatibility 
response. 

 
Furthermore, current research has highlighted 
that SI-induced acidification of the pollen tube 
cytosol plays a key role in triggering PCD. This 
acidification signal influences SI-induced 
caspase3-like activity, reduces the activity of the 
p26 pyrophosphatase, promotes the formation of 
filamentous actin (F-actin) foci, and leads to their 
colocalization with specific actin-binding proteins 
[9]. While these findings offer valuable insights, 
further exploration is still warranted to fully 
understand the intricacies of this self-
incompatibility mechanism in poppies. 
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Fig. 5. S-protein mediated signaling cascade in pollen [15] 
 

7. PRACTICAL APPLICATION 
 
Here are a few different approaches for 
achieving self-incompatibility (SI): 
 

7.1 Interplanting Two SI, Cross-
Compatible Lines 

 
Interplanting two self-incompatible lines, each 
with distinct S-alleles, in close proximity is a 
common technique used in crops with self-
incompatibility. This method ensures 
compatibility during pollination, resulting in hybrid 
seeds due to the cross-compatibility of parental 
lines' different S-alleles. It's particularly valuable 
for self-incompatible crops like certain 
Brassicaceae species. 
 

7.2 Interplanting an SI Line along with a 
Self-Compatible Line 

 
Interplanting a self-incompatible (SI) line with a 
self-compatible line involves planting them 
together. The self-compatible line can produce 
seeds when self-pollinated, so the seeds 
acquired from the self-incompatible line become 
hybrids due to cross-pollination with the self-
compatible line. This method exclusively 
produces hybrid seeds from self-incompatible 
lines. 
 

7.3 Production of Double Cross Hybrids 
(DCH) and Triple Cross Hybrids (TCH) 

 
Advanced hybrid schemes like double cross 
(DCH) and triple cross (TCH) hybrids go beyond 
simple crossbreeding. In these methods, several 

inbred lines are strategically utilized to establish 
a hierarchical cross. For instance, in Brassica 
crops, specific parental lines are chosen to 
produce initial F1 hybrids. Subsequently, these F1 
hybrids are crossed with another set of parental 
lines to generate DCH or TCH hybrids. These 
sophisticated approaches are employed to 
maximize and amplify heterosis, leading to 
enhanced hybrid vigor. 

 
8. SELF-INCOMPATIBILITY AS AN 

ALTERNATIVE TO MALE STERILITY 
FOR HYBRID SEED PRODUCTION 

 
Hybrid vigor, or heterosis, manifests when two 
parents with distinct genetic backgrounds are 
bred together. In the case of most cultivated 
plants, which are self-compatible, a highly 
efficient pollination control system is essential to 
prevent the female parent from self-fertilization. 
It's worth noting that self-incompatibility is 
generally favored over male sterility in crop 
species that rely on insect pollination since 
pollen-gathering bees seldom visit male-sterile 
plants. 

 
In the Brassicaceae family, self-incompatibility 
(SI) is extensively employed for hybrid seed 
production in diploid vegetable species like 
Brassica oleracea and B. rapa/B. compestris. 
However, when it comes to the derived 
amphidiploid oilseed Brassica napus (canola), it 
naturally exhibits self-compatibility. 
Consequently, the introduction of SI alleles 
becomes necessary. An example of this is the 
work by Goring et al. [41], who introduced the SI 
locus from the self-incompatible B. campestris 
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'W1' line into the self-compatible B. napus 
cultivar 'Westar,' eventually producing the self-
incompatible Westar line through a series of 
backcrosses. 
 
In the realm of grasses, self-incompatibility also 
holds promise for developing hybrid breeding 
schemes. Wheat, for instance, is an entirely self-
compatible inbred species, which has faced 
challenges in hybrid breeding due to difficulties in 
implementing male sterility. Nevertheless, self-
incompatibility exists in related grasses such as 
rye, offering the possibility of transferring genes 
from these close self-incompatible relatives to 
generate self-incompatible wheat strains. 
 

9. SELF-INCOMPATIBILITY USAGE 
ISSUES WITH HYBRID SEED 
PRODUCTION 

 
Inbred line generation and maintenance via hand 
pollination can be labour- and financially-
intensive, which subsequently increases the 
overall costs connected with hybrid seed 
production. Moreover, continuous selfing can 
give rise to several challenges: 
 

9.1 Depression in Self-Incompatibility 
 
Over time, continuous selfing can accompany a 
reduction in self-incompatibility, inadvertently 
favoring self-fertility in plants. This undermines 
the efficacy of the self-incompatibility 
mechanism. 
 

9.2 New Incompatibility Reactions 
 
In gametophytic systems, prolonged inbreeding 
can lead to the emergence of new incompatibility 
reactions. These novel reactions can limit the 
utility of inbred lines as parental contributors in 
hybrid breeding programs [42]. 
 

9.3 Environmental Factors 
 
Environmental conditions, such as high 
temperatures and humidity, can diminish or even 
override self-incompatibility reactions. This can 
result in a higher proportion of self-pollinated 
seeds, which is undesirable in hybrid seed 
production. 
 

9.4 Pollinator Behavior 
 
When the parental lines have noticeable 
morphological distinctions, pollinators like bees 

may show a preference for sticking with that 
particular line of descent. Due to the negative 
effects of self-pollination on the development of 
hybrid seeds, this inclination may result in a 
higher occurrence of it. 
 

9.5 Transfer of S Alleles 
 
It takes a lot of effort and time to transfer S 
alleles from one variety or species to another. 
This difficulty has hindered the utilization of self-
incompatibility in hybrid seed production in plant 
families like Solanaceae and Compositae. 
 

9.6 Difficulty in Maintaining Pure Lines 
 
Maintaining homozygous lines is also essential 
for hybrid breeding. Since SI species inherently 
favor outcrossing achieving homozygosity may 
be hindered. 
 
Efforts are being made to develop easier, more 
reliable, and cost-effective methods for 
multiplying inbred lines. Some promising 
approaches include: 
 

i)  Greenhouse Multiplication: Inbred lines are 
multiplied in controlled environments like 
greenhouses, where self-incompatibility 
may be induced by maintaining 
temperatures at or above 30⁰C. 

ii)  Polyethylene Tunnels: Inbred lines are 
grown in polyethylene tunnels with 
elevated levels of carbon dioxide (CO2) 
achieved, for example, by using CO2 
tablets. Pollination can be carried out 
either manually or by suitable insect 
pollinators, such as blow flies. 

iii)  Field Multiplication with Sodium Chloride 
Spray: Field multiplication of inbred lines 
can be achieved by applying a 5-10% 
sodium chloride spray over 3-5 days. This 
method has been successfully used with 
various Brassica species (e.g., B. napus, 
B. oleraceae, B. campestris) and is 
practical for field-level applications. 

 
Temporary suppression of self 
incompatibility: 
 
The following measures are being used for the 
maintenance of inbred lines: 
 

1) Bud Pollination. 

2) Surgical Techniques – Brassica spp. 

3) End of Season Pollination. 
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4) High Temperature – Trifolium spp., 
Solanum spp. 

5) Increased CO2 concentration 

6) High Humidity. 

7) Salt (NaCl) sprays 

8) Irradiation (Solanaceae) 

9) Double pollination 

10) Grafting (Trifolium pratense) 

 
10. CONCLUSION 
 
The molecular basis of self-incompatibility in 
plants is a captivating and intricate system              
that has evolved to ensure outcrossing and 
maintain genetic diversity within plant 
populations. This review provides an overview of 
the fundamental mechanisms underlying self-
incompatibility, with a particular focus on the 
pivotal role of the S-locus and its associated 
genes. The process of recognizing and rejecting 
self-pollen involves a complex interplay of 
genetic, biochemical, and cellular processes. 
Central to this mechanism is the specific 
interaction between the S-allele of the stigma 
and the corresponding S-allele of the pollen. This 
recognition event initiates a cascade of molecular 
activities, that ultimately lead to the inhibition of 
pollen tube growth, effectively preventing self-
fertilization. 

 
In essence, self-incompatibility mechanisms in 
plants are a testament to the intricate ways in 
which nature has evolved to promote genetic 
diversity and maintain the health and adaptability 
of plant populations. The study of these 
pertaining mechanisms continues to be a 
fascinating area of research, shedding light on 
the molecular intricacies that govern plant 
reproduction and evolution. Moreover, we have 
explored the various molecular components, 
such as S-RNases, F-box proteins, and receptor 
kinases play critical roles in this process. 
Understanding the molecular mechanisms 
underlying self-incompatibility not only sheds 
light on plant reproductive biology but also entails 
practical implications for plant breeding and 
agriculture. 

 
While substantial progress has been made in 
deciphering these molecular mechanisms, many 
questions and avenues for further research 
remain. Future studies may delve deep into the 
regulatory networks governing S-locus 
expression, and the potential applications of 
manipulating these systems for crop 
improvement. 
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