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This present paper studies the conformable space fractional Burgers, and the time fractional Sharma-Tasso-Olver models; both are
highly important for nonlinear diffusive waves in fluid dynamics, sound waves in a viscous medium, and flow in field soils, as well
as in gas and plasma dynamics. To retrieve explicit solutions of the fractional differential models, we propose an integral scheme,
namely, Modified Kudryashov method. We obtain periodic, solitary, mixed periodic-soliton, and polynomial solutions through
the approach. In particular, we exhibit topological kink-dark bell wave, topological kink, singular kink, bright bell, peakon
solitons, and periodic shape waves to apply suitable values on parameters for both distinct models. The impact of fractionality
on the wave shape and its deformation is analyzed and discussed graphically. We also investigate multishock wave’s solutions
of both models and analyzed the effect of each existing parameters involved in the obtained solutions. To visualize the real
characters of the solitary solutions, the graphical elucidation in 3D and 2D profiles are plotted. In computational effort and
realization, it is emphasized that the proposed scheme is friendly useful, highly effective, and a powerful mathematical tool to
extract exact solitary wave solutions for the differential models, as well as fractional differential models.

1. Introduction

Many natural phenomena in the fields of engineering; ocean
engineering, fluid flows, mathematical biology, signal process-
ing, optical communications systems, and electromagnetic
theories are modeled in terms of fractional derivatives
[1–11]. They have attracted high curiosities among the
researchers owing to their occurrences in the modeling of
complex physical phenomena. Therefore, solitary wave solu-
tions for the relevant nonlinear problems are fundamental
issues. A variety of powerful procedures have been explored
to evaluate the solitary solutions of the various differential
models with and without fractional derivatives in literature,
such as Weierstrass elliptic function method [2], Laplace
perturbation method [3], extended sinh-Gordon equation

expansion method [4, 5], Darboux transformation [6], modi-
fied residual power series method [7], Bernoulli polynomial
approaches [8], exp-expansion method [9], Adomian decom-
position method [10], homotopy perturbation method [11],
generalized Kudryashov method [12–14], (G′/G)-expansion
method [15], and Hirota bilinear methods [16–20].

Nowadays, numerous efforts have been invested in exe-
cution of the above methods to derive exact soliton solutions
for nonlinear differential models with space-time fractional.
Moreover, fractional differential models have apparent huge
devotion due to proper explanation of many nonlinear
events [21, 22]. Event symmetry analysis, analytical solu-
tions, and conservation laws of both total and fractional
nonlinear models [22–24] have attracted more attention
day by day. The space time fractional Burger (sFB) [8–10]
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and the time fractional Sharma-Tasso-Olver (tFSTO) [9, 11]
models are among the most important fractional models to
acquire deep understandings in real nonlinear phenomena
in the relevant fields. Both the sFB and tFSTO models are
initially converted from the generalized Burger model with
some parameter evaluations which have many applications
in stochastic problem, water and shock waves, gas dynamics,
acoustic science, thermal conduction, etcetera.

Motivated by the importance of the fractional models of
sFB and tFSTO and their solutions, present investigation
shed the light on the new approach for solving the space time
fractional Burger (sFB) and the time fractional Sharma-
Tasso-Olver (tFSTO) models by introducing Modified
Kudryashov method (MKM). Moreover, we went to derive
multishock soliton solutions of the models. Hence, the struc-
ture of this paper is as follows: In Section 2, we incorporate
definition of conformable fractional derivative and some of
its properties. In Section 3, we describe details on the pro-
posed Modified Kudryashov method (MKM) and its applica-
tions. In Section 4, we derive new plentiful analytic solutions
of the sFBM and the tFSTOM models. Next, we present dif-
ferent types of shapes of the gained wave solutions in 3D
and 2D graphics, respectively, in Section 5. Finally, the con-
clusions of this research are deduced in the last part.

2. Conformable Fractional Derivative and
Its Properties

In this section, some important properties of the conform-
able fractional derivatives according to fractional calculus
theory in [3–5] are revisited:

Let us consider a function ϕ : ð0,∞Þ⟶R where the
conformable fractional derivative of ϕ with order δ is defined
as ∂δϕ/∂tδ = lim

ε⟶0+
ðϕðt + εt1−δÞ − ϕðtÞ/εÞ, t > 0 and 0 < δ ≤ 1.

Hence, few key properties of the fractional derivative are
given as:

∂δ

∂tδ
lϕ +mψð Þ = l

∂δ

∂tδ
ϕð Þ +m

∂δ

∂tδ
ψð Þ,∀l,m ∈R,

∂δ

∂tδ
tβ
� �

= βtβ−δ,∀β ∈R,

ð1Þ

and

∂δ

∂tδ
λð Þ = 0, λ = const:,

∂δ

∂tδ
ϕ ∘ ψð Þ tð Þ = t1−δϕ′ ψ tð Þð Þψ′ tð Þ:

ð2Þ

3. The Proposed Modified Kudryashov
Method (MKM)

Here with onwards, we will extend the Kudryashov method
by using a new suitable integration technique so that our
modified method of Kudryashov can further be applied to
any nonlinear evolution equations. Let us consider a general

form of any nonlinear model as

Q U ,Dα
xD

β
t U ,Dα

xD
α
xU ,Dα

xU ,Dβ
t U ,⋯⋯ ::

� �
= 0, 0 < α, β < 1:

ð3Þ

Note that Q is a polynomial of U =Uðx, tÞ and its var-
ious partial fractional derivatives Dα include the nonlinear
terms.

Step-01. To convert the nonlinear partial differential Eq.
(5) into ordinary differential equation (ODE), we first use
the traveling variable,

U x, tð Þ =U ξð Þ, ξ = kxα

Γ 1 + αð Þ −
ωxβ

Γ 1 + βð Þ , ð4Þ

where k, ω are nonzero constants. Applying the chain rule

Dα
xU = ρx

dU
dξ

Dα
xξ,D

β
t U = ρt

dU
dξ

Dβ
t ξ, ð5Þ

where ρx, ρt are sigma indexes [3] which can be written as
ρx, ρt = Kðconst:Þ:

Now, by inserting Eq. (4) along with (5) into Eq. (3), we
can reach an ordinary differential equation as follows:

Q1 Uξ,Uξξξ,Uξξ,UUξ,Uξξξ, ::⋯ ⋯
� �

= 0: ð6Þ

Next, we will integrate Eq. (6) as many times as possible
while keeping every integral constant to be zero.

Step-2. Assuming the solution of Eq. (6) takes the gen-
eral form of a polynomial function FðξÞ, we can write

U ξð Þ = ∑N
i=0ai F ξð Þð Þi

∑M
j=0bj F ξð Þð Þj

, ð7Þ

where ai, bj, ω, k, i = 0,⋯⋯ ,m, j = 0,⋯⋯ , n are constants
to be evaluated later. Here, aN ≠ 0, bM ≠ 0 whereas N andM
are positive integers, which can be found from the principle
of balancing technique. Next, we have a condition of FðξÞ
that satisfies the general form of the Riccati equation,

F ′ ξð Þ = A + BF ξð Þ + CF2 ξð Þ: ð8Þ

Step-3. By substituting Eq. (7) into Eq. (6) and using the
ODE (8), we can execute a polynomial for FðξÞ by collecting
all same order of FðξÞ together. Equating coefficients of FðξÞ
yields a set of algebraic systems for ai, bj, ω, k, i = 0,⋯⋯ ,
m, j = 0,⋯⋯ , n. Solving the unknowns and setting them
into Eq. (7), we can attain the analytic and exact traveling
wave solutions of the nonlinear model in Eq. (3).

It is further pointed out that diverse types of solutions
are possible for (8):
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Case-1: When B = 0, C = 1, then (8) has the solution

F ξð Þ =
−
ffiffiffiffiffiffi
−A

p
tanh

ffiffiffiffiffiffi
−A

p
ξ

� �
, A < 0

−
ffiffiffiffiffiffi
−A

p
coth

ffiffiffiffiffiffi
−A

p
ξ

� �
, A < 0

8><
>: , ð9Þ

F ξð Þ = −
1
ξ
,A = 0, ð10Þ

F ξð Þ =
ffiffiffiffi
A

p
tan

ffiffiffiffi
A

p
ξ

� �
,A > 0

−
ffiffiffiffi
A

p
cot

ffiffiffiffi
A

p
ξ

� �
, A > 0

8><
>: : ð11Þ

Case-2: When A = 0, B = −1, C = 1, then (8) has the
solution

F ξð Þ = 1
1 + heξ

: ð12Þ

Case-3: When C = 0, then (8) has the solution

F ξð Þ = heBξ − A
B

: ð13Þ

In general, there may have more solutions of (8), but that
will be applicable when we can solve any nonlinear models
without particular values of the constants A, B, C:

Remark. When we consider the particular values A = 0,
B = −1, C = 1 in the auxiliary equation of the proposed
method, we reach to the generalized Kudryashov method
[12, 13] and when b0 = 1, bj = 0 in the trail solution (7) of
our method, then we reach to the extended Kudryashov
method [14]. Thus, the methods [12–14] are the special
cases of this newly proposed MKM.

4. Applications to the Models

In these parts, we present the applications of the MKM for
obtaining exact traveling wave solutions to the space frac-
tional Burgers and the time fractional Sharma-Tasso-Olver
models. Additionally, we present multishock wave solutions
by a different approach of the models.

4.1. The sFBM and tFSTOM Models. The sFBM model
given by Eq. (14) is a nonlinear model of diffusive waves
which found many applications in fluid dynamics, one-
dimensional soundwaves in a viscous medium, gas dynamics,
shock waves in a viscous medium, magneto-hydrodynamic
waves in a medium with finite electrical conductivity, tur-
bulence, and in plasma dynamics applied to unsaturated
flow in field soils [8–10]. This model has the usual form
[8–10]:

νt + ννx − kνxx + qDδ
xν = 0, x, t > 0, 0 < δ ≤ 1, ν 0, tð Þ

= 0, νx 0, tð Þ = 1
t
−

π2

2kt2 ,
ð14Þ

where k, q are constants and δ is an aspect relating to the
order of the fractional derivative.

On the other hand, the tFSTOM model has real-life
applications in the fields of relativistic quantum atom
dynamics, the relativistic energy evaluation, and the nonlin-
ear electromagnetic phenomena. The tFSTOM model has
the usual form [9, 11]:

Dδ
t ν + 3aν2x + 3aν2νx + 3aννxx + aνxxx

= 0, t > 0, 0 < δ < 1, ν x, 0ð Þ = −
ffiffiffiffiffiffiffi
2b0

p
tan

ffiffiffiffiffiffiffi
2b0

p
2 x

 !
,

ð15Þ

where a, b0 are constants and δ is an aspect relating to the
order of the fractional derivative.

4.2. The Application of the MKM to the sFBM. In this sec-
tion, we explore a reliable treatment to the sFBM with the
help of the MKM.

Primarily, we will use the traveling wave variable, νðx, tÞ
= νðξÞ, ξ = lxδ/Γð1 + δÞ −wt, to renovate Eq. (14) to the fol-
lowing ordinary differential equation:

−wν′ + lνν′ − kl2ν″ + qlν′ = 0: ð16Þ

Integrating (16) one time gives us

p + lq −wð Þν + lν2/2 − kl2ν′ = 0, ð17Þ

where p is an integral constant.
Now we compute the balance number of Eq. (17) from

the linear terms ν″ and ν3 gives n =m + 1: For m = 1, we
have n = 2: So, the trial solution of Eq. (7) takes the fol-
lowing form,

ν ξð Þ = l0 + l1F ξð Þ + l2 F ξð Þð Þ2
m0 +m1F ξð Þ : ð18Þ

We now differentiate Eq. (18) with respect to ξ along
with Eq. (8), and then inserting ν, ν′ intoEq. (17), which
gives an equation. Equating the coefficients of FlðξÞ from
the required equation equal to zero yields the following
set of constraints:

Set-1:

p = 2k2l3C Am2
1 + Bm0m1 − Bm2

1 + Cm2
0 − 2Cm0m1 + Cm2

1
� �

m2
1

,

w = l q + 2Ckl − Bkl − 2Cklm0/m1ð Þ,
l0 = 2Cklm0 m1 −m0ð Þ/m1, l1 = 2Cklm1, l2 = 2Cklm1:

ð19Þ

Set-2:

3Advances in Mathematical Physics



Set-3:

where

Setting the constraints of Set-1 into (18) along with the
results of auxiliary equation from Case-1, Case-2, and
Case-3 of our method, we attain the following solutions:

Case-1S1: For B = 0, C = 1, the gained solutions are:

p = 2Ck2l3m1 Am1 − Bm0ð Þ2 2m0 +m1ð Þ A2Bm4
1 +A2Cm4

1 − 2AB2m0m3
1

� �
+ 4BC2m4

0 m0 −m1ð Þ + 2ABCm0m
2
1 4m2

0 −m0m2 − 1
� �

+ 4AC2m3
0m

2
1 + 2B2m2

0m1 Bm0m1 + Bm2
1 − 4Cm2

0
� �

+ B2Cm2
0m

3
1

� �	 

Am2

1 − Bm0m1 + 2Cm2
0

� �4 ,

w = l kl ABm2
1 Am2

1 − 2Bm0
� �

+ 2A2Cm3
1 m0 +m1ð Þ − 2ABCm0m

2
1 m0 + 2m1ð Þ +m2

0m1 4AC2 + B3m1
� �

+ 2B2Cm2
0 m2

1 − 2m2
0

� �� �
+ q m2

1 A2m2
1 + B2m2

0
� �

− 2Am0m
2
1 Bm1 − 2Cm0ð Þ − 4Cm2

0 Bm1 − Cð Þ� �	 
� �
Am2

1 − Bm0m1 + 2Cm2
0

� �2 ,

l0 =
2klm1 Am1 − Bm0ð Þ2 Bm0m1 + Cm0m1 − Am2

1 − 2Cm2
0

� �
Am2

1 − Bm0m1 + 2Cm2
0

� �2 ,

l1 =
2Cklm3

1 Am1 − Bm0ð Þ
Am2

1 − Bm0m1 + 2Cm2
0

� �2 ,

l2 =
2Cklm2

1 Bm0 − Am1ð Þ
Am2

1 − Bm0m1 + 2Cm2
0
:

ð20Þ

p = B 8BC3 kll2m0ð Þ2 2A + Bð Þ + B3l32 l2 − 4Cklm0ð Þ − 32 2C3k2l2m2
0 + BCkll2m0

� �
R

� �
128C6k2lm4

0
,

w = 8C3klqm2
0 − 4B2Ckll2m0 + B2l22
8C3km2

0
, l0 = ± R

m0klC
3 , l1 =

Bl22
4C2klm0

,m1 =
2Cm0
B

,

ð21Þ

R = −
1
8B 4C3 klm0ð Þ2 4AC − B2� �

+ B3l2 2Cklm0 − l2ð Þ ± 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cklm0ð Þ2 4AC − B2ð Þ 4C4 klm0ð Þ2 4AC − B2ð Þ + B3l2 4Cklm0 − l2ð Þ� �q� �

:

ð22Þ

ν1 x, tð Þ =
2klm0 m1 −m0ð Þ/m1 − 2klm1

ffiffiffiffiffiffi
−A

p
tanh

ffiffiffiffiffiffi
−A

p
ξ

� �
− 2Aklm1 tanh2

ffiffiffiffiffiffi
−A

p
ξ

� �
m0 −m1

ffiffiffiffiffiffi
−A

p
tanh

ffiffiffiffiffiffi
−A

p
ξ

� � , A < 0, ð23Þ

ν2 x, tð Þ =
2klm0 m1 −m0ð Þ/m1 − 2klm1

ffiffiffiffiffiffi
−A

p
coth

ffiffiffiffiffiffi
−A

p
ξ

� �
− 2Aklm1 coth2

ffiffiffiffiffiffi
−A

p
ξ

� �
m0 −m1

ffiffiffiffiffiffi
−A

p
coth

ffiffiffiffiffiffi
−A

p
ξ

� � , A < 0, ð24Þ

ν3 x, tð Þ = 2klm0 m1 −m0ð Þf gξ2 − 2klm2
1ξ + 2klm2

1

m1 m0ξ
2 −m1ξ

� � , ð25Þ

ν4 x, tð Þ =
2klm0 m1 −m0ð Þ/m1 + 2klm1

ffiffiffiffi
A

p
tan

ffiffiffiffi
A

p
ξ

� �
+ 2Aklm1 tan2

ffiffiffiffi
A

p
ξ

� �
m0 +m1

ffiffiffiffi
A

p
tan

ffiffiffiffi
A

p
ξ

� � , A > 0, ð26Þ

ν5 x, tð Þ =
2klm0 m1 −m0ð Þ/m1 − 2klm1

ffiffiffiffi
A

p
cot

ffiffiffiffi
A

p
ξ

� �
+ 2Aklm1 cot2

ffiffiffiffi
A

p
ξ

� �
m0 −m1

ffiffiffiffi
A

p
cot

ffiffiffiffi
A

p
ξ

� � , A > 0, ð27Þ
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where ξ = lxδ/Γð1 + δÞ − lðq + 2kl − 2klm0/m1Þ t:
Case-2S1: For A = 0, B = −1, C = 1, the gained solutions

are:

ν6 x, tð Þ = 2klm1 + 2klm1 1 + heξ
� �

+ 2klm0 m1 −m0ð Þ/m1f g 1 + heξ
� �2

m1 1 + heξ
� �

+m0 1 + heξ
� �2 ,

ð28Þ

where ξ = lxδ/Γð1 + δÞ − lðq + 2kl + kl − 2klm0/m1Þt:
Case-3S1: The third case gives the invalid results as C

= 0, gives l2 = 0.
Setting the constraints of Set-2 into (18) along with

results of auxiliary equation from Case-1, Case-2, and
Case-3 of our method, we further attain the following
solutions:

Case-1S2: For B = 0, C = 1, the gained solutions are:

where ξ = lxδ/Γð1 + δÞ − lf2A2klm3
1ðm0 +m1Þ + 4Aklm2

0m1
+ 4qðA2m4

1 + Am2
0m

2
1 +m4

0Þgt/ðAm2
1 + 2m2

0Þ2:
Case-2S2: For A = 0, B = −1, C = 1, the gained solutions

are:

ν11 x, tð Þ = −2klm0m
2
1 m0m1 + 2m2

0
� �

+ 2klm2
0m

3
1 1 + heξ
� �

− 4klm1m
2
0 1 + heξ
� �2

m0m1 + 2m2
0

� �2 m1 1 + heξ
� �

+m0 1 + heξ
� �2n o ,

ð30Þ

where ξ = lxδ/Γð1 + δÞ − lfklm2
0ð4m2

0 +m2
1Þ + qm2

0ð4m2
0 + 4q

m0m1 +m2
1Þgt/ðm0m1 + 2m2

0Þ2:
Case-3S2: The third case gives the invalid results as C

= 0, gives l2 = 0.
Setting the constraints of Set-3 into (18) along with

results of auxiliary equation from Case-1, Case-2, and
Case-3 of our method, we attain the following solutions:

Case-1S3: For B = 0, C = 1, Case-1 and Case-3 give the
undefined statements.

Case-2S3: For A = 0, B = −1, C = 1, the gained solutions
are:

ν12 x, tð Þ = 4klm0l2 − l22 1 + heξ
� �

± 4R 1 + heξ
� �2

4klm2
0 1 + heξ
� �

heξ − 1
� � , ð31Þ

where ξ = lxδ/Γð1 + δÞ − ð8kqlm2
0 − 4kll2m0 + l22/8km2

0Þt and
R = l22/8 − k2l2m2

0 − 1/2kll2m0or ðl22/8Þ.
Case-3S3: The third case gives the invalid results as C

= 0, gives l2 = 0.

4.3. The Multishock Waves to the Time sFBM. In this section,
we now explore a reliable technique to achieve multishock
wave of the fractional model. To do so, we consider the sim-
ple Burger equation

νt − 2ννx − νxx = 0: ð32Þ

Taking traveling variable νðx, tÞ = YðξÞ, ξ = lx −wt, Eq.
(32) leads to ODE as follows:

Yξ x, tð Þ = Y −
1
l
Y2: ð33Þ

Equation (33) has a multisoliton solution [21].

Y =
∑n

j=1l je
l jx−wjt

1 +∑n
j=1e

l jx−wjt
: ð34Þ

ν7 x, tð Þ =
2A2klm3

1 m0m1 − Am2
1 − 2m2

0
� �

− 2A2klm5
1
ffiffiffiffiffiffi
−A

p
tanh

ffiffiffiffiffiffi
−A

p
ξ

� �
+ 2A2klm3

1 Am2
1 + 2m2

0
� �

tanh2
ffiffiffiffiffiffi
−A

p
ξ

� �n o
Am2

1 + 2m2
0

� �2 m0 −m1
ffiffiffiffiffiffi
−A

p
tanh

ffiffiffiffiffiffi
−A

p
ξ

� �n o , A < 0,

ν8 x, tð Þ =
2A2klm3

1 m0m1 − Am2
1 − 2m2

0
� �

− 2A2klm5
1
ffiffiffiffiffiffi
−A

p
coth

ffiffiffiffiffiffi
−A

p
ξ

� �
+ 2A2klm3

1 Am2
1 + 2m2

0
� �

coth2
ffiffiffiffiffiffi
−A

p
ξ

� �n o
Am2

1 + 2m2
0

� �2 m0 −m1
ffiffiffiffiffiffi
−A

p
coth

ffiffiffiffiffiffi
−A

p
ξ

� �n o , A < 0,

ν9 x, tð Þ =
2A2klm3

1 m0m1 − Am2
1 − 2m2

0
� �

+ 2A2klm5
1
ffiffiffiffi
A

p
tan

ffiffiffiffi
A

p
ξ

� �
− 2A2klm3

1 Am2
1 + 2m2

0
� �

tan2
ffiffiffiffi
A

p
ξ

� �n o
Am2

1 + 2m2
0

� �2 m0 +m1
ffiffiffiffi
A

p
tan

ffiffiffiffi
A

p
ξ

� �n o , A > 0,

ν10 x, tð Þ =
2A2klm3

1 m0m1 − Am2
1 − 2m2

0
� �

− 2A2klm5
1
ffiffiffiffi
A

p
cot

ffiffiffiffi
A

p
ξ

� �
− 2A2klm3

1 Am2
1 + 2m2

0
� �

cot2
ffiffiffiffi
A

p
ξ

� �n o
Am2

1 + 2m2
0

� �2 m0m1
ffiffiffi
A

p
cot

ffiffiffi
A

p
ξð Þ

n o , A > 0,

ð29Þ
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Let us consider the trial solution of Eq. (17) is

v = a0 + a1Y : as balance number of Burgermodel is unity½ �
ð35Þ

Keeping arbitrary constant p = 0 in Eq. (17), differentiat-
ing Eq. (35) together with Eq. (33) into Eq. (17), leads an
algebraic system and solving, we reach to multisoliton shock
wave solution

v = 2k〠
n

j=1
l j −

2k∑n
j=1 δl j/Γ 1 + δð Þ� �

el jx
δ/Γ 1+δð Þ−wjt

1 +∑n
j=1e

l jxδ/Γ 1+δð Þ−wjt
, ð36Þ

where

wj = 〠
n

j=1
kl2j + qlj
� �

: ð37Þ

4.4. The Application of the MKM to the Time FSTOM. In this
section, we now explore a reliable treatment to the time
FSTOM with the help of the MKM.

Firstly, we will use the traveling wave variable νðx, tÞ =
νðξÞ, ξ = x − ltδ/Γð1 + δÞ, to renovate Eq. (4) to the following
ordinary differential equation:

−lν′ + 3a ν′
� �2

+ 3aν2ν′ + 3aνν″ + aν‴ = 0: ð38Þ

Integrating Eq. (38) one time gives us

p − lν + 3aνν′ + aν3 + aν″ = 0: ð39Þ

Now we compute the balance number of (39) from the
linear terms ν″ and ν3 gives n =m + 1:

For m = 1, we have n = 2: So, the trial solution of Eq. (7)
takes the following form,

ν ξð Þ = l0 + l1F ξð Þ + l2 F ξð Þð Þ2
m0 +m1F ξð Þ : ð40Þ

We now differentiate Eq. (40) with respect to ξ along
with (10), and then inserting v, v′, v″ into Eq. (39), it gives
an equation. Equating the coefficients of FlðξÞ from the
required equation equal to zero yields the following findings:

It is very difficult to solve the obtained system of equa-
tions in general case even in computational software. Thus,
we choose the particular cases (Case-1 and Case-2) to get
the results as follows:

Case-1: For B = 0, C = 1, the system of equation leads to
the solutions:

Set-1: p = 0, l = −4aA, l0 = 0, l2 = l1,m0 = −l1/2,m1 = −l1/2:
Set-2: p = 0, l = −aA, l0 = 0, l2 = l1,m0 = −l1,m1 = −l1:
Setting the constraints of Set-1 into (40) along with the

results of auxiliary equation from Case-1 of our method,
we attain the following solutions:

Case-1S1: For B = 0, C = 1, the gained solutions are:

ν1 x, tð Þ =
2
ffiffiffiffiffiffi
−A

p
tanh

ffiffiffiffiffiffi
−A

p
x + 4aAtδ/Γ 1 + δð Þ� �� �n o

+ 2A tanh2
ffiffiffiffiffiffi
−A

p
x + 4aAtδ/Γ 1 + δð Þ� �� �n o

1 −
ffiffiffiffiffiffi
−A

p
tanh

ffiffiffiffiffiffi
−A

p
x + 4aAtδ/Γ 1 + δð Þ� �� �n o , A < 0, ð41Þ

ν2 x, tð Þ =
2
ffiffiffiffiffiffi
−A

p
coth

ffiffiffiffiffiffi
−A

p
x + 4aAtδ/Γ 1 + δð Þ� �� �n o

+ 2A coth2
ffiffiffiffiffiffi
−A

p
x + 4aAtδ/Γ 1 + δð Þ� �� �n o

1 −
ffiffiffiffiffiffi
−A

p
coth

ffiffiffiffiffiffi
−A

p
x + 4aAtδ/Γ 1 + δð Þ� �� �n o , A < 0, ð42Þ

ν3 x, tð Þ =
−2

ffiffiffiffi
A

p
tan

ffiffiffiffi
A

p
x + 4aAtδ/Γ 1 + δð Þ� �� �n o

− 2A tan2
ffiffiffiffi
A

p
x + 4aAtδ/Γ 1 + δð Þ� �� �n o

1 +
ffiffiffiffi
A

p
tan

ffiffiffiffi
A

p
x + 4aAtδ/Γ 1 + δð Þ� �� �n o , A > 0, ð43Þ

ν4 x, tð Þ =
2
ffiffiffiffi
A

p
cot

ffiffiffiffi
A

p
x + 4aAtδ/Γ 1 + δð Þ� �� �n o

− 2A cot2
ffiffiffiffi
A

p
x + 4aAtδ/Γ 1 + δð Þ� �� �n o

1 −
ffiffiffiffi
A

p
cot

ffiffiffiffi
A

p
x + 4aAtδ/Γ 1 + δð Þ� �� �n o , A > 0: ð44Þ
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Setting the constraints of Set-2 into (40) along with
results of auxiliary equation from Case-1 of our method,
we attain to the following solutions:

Case-1S2: For B = 0, C = 1, the solutions are:

Case-2: For A = 0, B = −1, C = 1, the system of equations
leads to the solutions:

Set-1:

p = 1
m2

1

2m0m1 +m2
1

� �
3a m2

0 −m0m1
� �

− 6am2
0 + 12am0m1 − 7am2

1
� �

m2
1

+ 8am0 m1 −m0ð Þ2
m1

+ a m2
1 + 10m0m1 − 8m2

0
� �

,

l = 3a m0m1 −m2
0

� �
+ 6am2

0 − 12am0m1 + 7am2
1

m2
1

, l0

= m2
0 −m0m1
m1

, l1 = −m1, l2 = −m1:

ð46Þ

Set-2: p = 0, l = a, l0 = 3m1/2, l1 = −2m1, l2 = −2m1,m0 =
3m1/2:

Set-3: p = −12a, l = 13a, l0 =m1/2, l1 = −m1, l2 = −m1,m0
= −m1/2:

Set-4: p = 0, l = a, l0 =m1/2, l1 = −m1, l2 = −m1,m0 =m1/2:
Set-5:

ν5 x, tð Þ =
ffiffiffiffiffiffi
−A

p
tanh

ffiffiffiffiffiffi
−A

p
x + aAtδ/Γ 1 + δð Þ� �� �n o

+ A tanh2
ffiffiffiffiffiffi
−A

p
x + aAtδ/Γ 1 + δð Þ� �� �n o

1 −
ffiffiffiffiffiffi
−A

p
tanh

ffiffiffiffiffiffi
−A

p
x + aAtδ/Γ 1 + δð Þ� �� �n o , A < 0,

ν6 x, tð Þ =
ffiffiffiffiffiffi
−A

p
coth

ffiffiffiffiffiffi
−A

p
x + aAtδ/Γ 1 + δð Þ� �� �n o

+ A coth2
ffiffiffiffiffiffi
−A

p
x + aAtδ/Γ 1 + δð Þ� �� �n o

1 −
ffiffiffiffiffiffi
−A

p
coth

ffiffiffiffiffiffi
−A

p
x + aAtδ/Γ 1 + δð Þ� �� �n o , A < 0,

ν7 x, tð Þ =
−
ffiffiffiffi
A

p
tan

ffiffiffiffi
A

p
x + aAtδ/Γ 1 + δð Þ� �� �n o

− A tan2
ffiffiffiffi
A

p
x + aAtδ/Γ 1 + δð Þ� �� �n o

1 +
ffiffiffiffi
A

p
tan

ffiffiffiffi
A

p
x + aAtδ/Γ 1 + δð Þ� �� �n o , A > 0,

ν8 x, tð Þ =
ffiffiffiffi
A

p
cot

ffiffiffiffi
A

p
x + aAtδ/Γ 1 + δð Þ� �� �n o

− A cot2
ffiffiffiffi
A

p
x + aAtδ/Γ 1 + δð Þ� �� �n o

1 −
ffiffiffiffi
A

p
cot

ffiffiffiffi
A

p
x + aAtδ/Γ 1 + δð Þ� �� �n o , A > 0:

ð45Þ

p = 0, l = −
a 275 −3/2 ±

ffiffiffiffiffi
17

p
/2

� �3
+ 1815 −3/2 ±

ffiffiffiffiffi
17

p
/2

� �2
+ 2412 −3/2 ±

ffiffiffiffiffi
17

p
/2

� �3
 �
− 2004

� �
22 −3/2 ±

ffiffiffiffiffi
17

p
/2

� �
+ 78

,

l0 = −
m1 3 −3/2 ±

ffiffiffiffiffi
17

p
/2

� �
+ 11

n o
11 −3/2 ±

ffiffiffiffiffi
17

p
/2

� �
+ 39

, l1 = −
3
2 ±

ffiffiffiffiffi
17

p

2

 !
m1, l2 = −

2m1

−3/2 ±
ffiffiffiffiffi
17

p
/2

� �
+ 3

,m0 = −m1/2:

ð47Þ
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Setting the constraints of Set-1 to Set-5 into (40) along
with the results of auxiliary equation from Case-2 yields
the solutions:

where l = −af275L3 + 1815L2 + 2412L − 2004g/22L + 78 and
L = −3/2 ±

ffiffiffiffiffi
17

p
/2:

4.5. The Multishock Waves to the FSTOM. In this section, we
now explore a reliable technique [25] to achieve multishock
wave of the fractional FSTOM. To do so, we consider the
simple Burger equation (32) and Eq. (33). Then, we consider
the wave transformation

ν x, tð Þ = ν ξð Þ, ξ = lx −
wtδ

Γ 1 + δð Þ : ð54Þ

Using Eq. (54), Eq. (4) leads to

−wv′ + 3al2 v′
� �2

+ 3alv2v′ + 3al2vv′′ + al3v′′′ = 0: ð55Þ

Integrating once with putting integral constant as zero,
Eq. (55) provides

–wv + 3al2vν′ + alν3 + al3v′′ = 0: ð56Þ

Let us consider the trial solution of Eq. (56) is

v = a0 + a1Y : as balance number of themodel is unity½ � ð57Þ

Differentiating Eq. (57) together with Eq. (33) into Eq.
(56), leads an algebraic system and solving, we reach to
mutlishock wave solution.

v = −〠
n

j=1
l j +

2∑n
j=1l je

l jx−wtδ/Γ 1+δð Þ

1 +∑n
j=1e

l jx−wtδ/Γ 1+δð Þ , ð58Þ

where

wj = 〠
n

j=1
al3j : ð59Þ

5. Numerical Results and Discussions

Numerical illustrations of wave profiles are essential keys for
exploration, analysis, and as a tool to communicate the
achieved results of the problems coherently. In order to
demonstrate the effect of waves in the corresponding appli-
cation fields, we require definitive knowledge of securing
the use of the properties in daily life. Hence, in this section,
we physically explain and discuss the features of the solu-
tions of the sFBM and tFSTOM via the MKM in 3D
graphics. We discuss the impact of fractionality and param-
eters on the wave solutions and observe the potential
changes of wave properties.

5.1. The Physical Descriptions for the Solutions of the sFBM
via the MKM. We present here dynamical properties such
as topological kink-dark bell and singular kink, bright bell
solitons, and periodic waves of the sFBM. We obtain twelve
solutions of the sFBM, among them the solutions ν1ðx, tÞ
and ν7ðx, tÞ exhibit solitonic characters while the solutions
ν2ðx, tÞ and ν8ðx, tÞ exhibit similar solitonic nature with sin-
gularities. Figure 1 represents topological kink-dark bell
waves of ν1ðx, tÞ. It is signified that the effect of order of

ν9 x, tð Þ = m2
0 −m0m1

� �
1 + heξ
� �2 −m2

1 2 + heξ
� �

m1 1 + heξ
� �

m0 1 + heξ
� �

+m1
� � , ð48Þ

ξ = x −
3a m0m1 −m2

0
� �

+ 6am2
0 − 12am0m1 + 7am2

1
� �

tδ

m2
1Γ 1 + δð Þ , ð49Þ

ν10 x, tð Þ = −8 − 4h exp x − atδ/Γ 1 + δð Þ� �
+ 1 + h exp x − atδ/Γ 1 + δð Þ� �� �2

1 + h exp x − atδ/Γ 1 + δð Þ� �� �
5 + 3h exp x − atδ/Γ 1 + δð Þ� �� � , ð50Þ

ν11 x, tð Þ = −4 − 2h exp x + 12atδ/Γ 1 + δð Þ� �� �
+ 1 + h exp x + 12atδ/Γ 1 + δð Þ� �� �� �2

1 − h2 exp 2x + 24atδ/Γ 1 + δð Þ� �� �� � , ð51Þ

ν12 x, tð Þ = −4 − 2h exp x − atδ/Γ 1 + δð Þ� �
+ 1 + h exp x − atδ/Γ 1 + δð Þ� �� �2

1 + h exp x − atδ/Γ 1 + δð Þ� �� �
3 + h exp x − atδ/Γ 1 + δð Þ� �� � , ð52Þ

ν13 x, tð Þ = − 6L + 22/11L + 39ð Þ 1 + h exp x − ltδ/Γ 1 + δð Þ� �� �2 + 2L 1 + h exp x − ltδ/Γ 1 + δð Þ� �� �
− 4/L + 3

1 − 1 + h exp x − ltδ/Γ 1 + δð Þ� �� �2 , ð53Þ
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Figure 1: Continued.
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Figure 1: Topological kink-dark bell wave for m1 = 1,m0 = 2, A = −1, l = 1:5, k = q = 1 of (23): (a, b) curvy surface for fractional order, (c)
straight surface for complete order, (d, e, f) corresponding contour plots of beyond.
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complete order.
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Figure 5: Single shock wave for l1 = 1: (a) q = 1, δ = 0:9, (b) k = 3, δ = 0:9, K = 3, q = 1, and (c) q = 1, k = 3 at x = 40.
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differential fractionality is observed on the wave surface
which gives the real situation as really most of the natural
waves proceed in a curvy pattern. In Figure 1, one can
observe that the wave surface is curvier for the lower frac-
tional order (see Figure 1(a) and corresponding contour plot
(d)), and curvy pattern gradually reduces to straight line sur-
face as the order of fractionality increases (see Figure 1(b)
and corresponding contour plot (e)), and ultimately being
straight surface for complete order of the derivative, i.e., δ
= 1 (see Figure 1(c) and corresponding contour plot (f)).
The solution ν3ðx, tÞ comes from the rational solutions as
a topological singular kink soliton (see Figure 2). However,
the solutions ν4ðx, tÞ and ν9ðx, tÞ are periodic waves while
the solutions ν5ðx, tÞ and ν10ðx, tÞ are similar periodic waves

with singularities. Figure 3 represents periodic waves of ν4
ðx, tÞ. Besides, the solutions ν6ðx, tÞ, ν11ðx, tÞ, and ν12ðx, tÞ
come in terms of exponential functions that exhibit bright
bell solitary waves as depicted in Figure 4 of ν11ðx, tÞ. The
impact of fractionality is similarly observed in all wave solu-
tions like explanation of Figure 1.

5.2. The Physical Descriptions for the Multishock Wave
Solutions of the sFBM. Shock waves and its multistages
jumping process (multitimes shocks) are very important in
the fields of shock waves in a viscous medium, magneto-
hydrodynamic waves in a medium with finite electrical con-
ductivity, turbulence, and in plasma dynamics. We present
here overtaking collision of multishock waves to the sFBM
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Figure 6: Two shock waves for l1 = 1, l2 = 0:5: (a) q = 1, δ = 0:9, (b) k = 3, δ = 0:9K = 3, q = 1, and (c) q = 1, k = 3 at x = 40.
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and its different scattering way, distances from each other,
amplitudes, and height of each shock are showed for differ-
ent changes of parameter a in Figures 5–7. The effect of dis-
persive parameters k, the coefficient of fractional derivative q
, and fractional order on overtaking collisions of multishocks
are illustrated graphically.

5.3. The Physical Descriptions for the Solutions of the
tFSTOM via the MKM. We present here dynamical proper-
ties such as topological kink and singular kink, bright and
bark bell solitons, periodic waves, and peakon soliton of
the tFSTOM. We obtain thirteen solutions of the tFSTOM,
and among them, the solutions ν1ðx, tÞ, ν5ðx, tÞ exhibit soli-
tonic character while ν2ðx, tÞ, ν6ðx, tÞ represent similar soli-

tonic nature with singularities. Figure 8 represents
topological kink waves specified by ν1ðx, tÞ. It is signified
that the effect of order of differential fractionality is observed
on the wave surface which gives the real situation as really
most of the natural waves proceed in a curvy pattern. In
Figure 8, one can observe that the wave surface is curvy for
the lower fractional order (see Figure 8(a) and correspond-
ing contour plot (d)) and curvy pattern gradually reduces
to straight line surface as the order of fractionality increases
(see Figure 8(b) and corresponding contour plot (e)), and
ultimately being straight surface for complete order of the
derivative, i.e., δ = 1 (see Figure 8(c) and corresponding con-
tour plot (f)). The solutions ν3ðx, tÞ and ν7ðx, tÞ are periodic
waves while the solutions ν4ðx, tÞ, ν8ðx, tÞ represent similar
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Figure 7: Three shock waves for l1 = 1, l2 = 0:5, l3 = 1:5: (a) q = 1, δ = 0:9, (b) k = 3, δ = 0:9, K = 3, q = 1, and (c) q = 1, k = 3 at x = 40.
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Figure 8: Topological kink wave for A = −1, a = 0:5 of (41): (a, b) curvy surface for fractional order, (c) straight surface for complete order,
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periodic waves with singularities. Figure 9 represents peri-
odic waves of ν3ðx, tÞ. The other solutions of ν9ðx, tÞ, ν10ðx
, tÞ, ν11ðx, tÞ, ν12ðx, tÞ, and ν13ðx, tÞ come in an exponential
fashion and represent different solitonic characters for dis-

similar values of the existing parameters. Figures 10–12,
demonstrate topological kink, singular kink, and dark bell
wave solutions by ν9ðx, tÞ, ν11ðx, tÞ, and ν13ðx, tÞ, respec-
tively. The nature of the solution ν10ðx, tÞ, ν12ðx, tÞ is similar
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Figure 9: Periodic wave solution for A = a = 1 of (43): (a) for δ = 0:25, (b) for δ = 0:5, (c) for δ = 1: (a, b) curvy surface for fractional order,
(c) straight surface for complete order.
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to the result ν9ðx, tÞ and the nature of the solution deformed
into a single peak wave when the fractionality tend to unity
(see Figures 10(b) and 10(c)). Besides this, Figure 11 speci-
fied by ν11ðx, tÞ exhibits multipeakon soliton only for lower

fractionality δ⟶ 0 ð<0:25Þ (see Figure 11(a)), but it
reduces to singular kink wave with multipeak as increases
of the fractionality δ⟶ 1 ; δ ∈ ð0, 1Þ (see Figures 11(b)
and 11(c)). Figure 12 represents dark bell wave for the
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Figure 11: Multipeakon soliton for a = h = 1 of (51): (a) multipeakon soliton, (b) singular kink with curvy surface for fractional order, (c)
singular kink with multipeakon straight surface for complete order of fractionality.
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/2: (a) curvy surface for fractional order, (b) comparatively straight surface for

fractionality δ = 0:5.
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parametric value L = −3/2 +
ffiffiffiffiffi
17

p
/2, but it is just being a sin-

gle peak wave depicted by Figure 13 for L = −3/2 −
ffiffiffiffiffi
17

p
/2. It

is observed for Figure 13 that at the time of interactions or
nearer, the waves’ height decreases exponentially with
utmost deeper peak. The impact of fractionality is similarly
observed in all wave solutions like explanation of Figure 8.

5.4. The Physical Descriptions for the Multishock Wave
Solutions of the tFSTOM. We present here overtaking colli-
sion of multishock waves to the tFSTOM and its different
scattering way, amplitudes, and height of each shock are
showed for different changes of parameter a in Figure 14.
From the view, one interested researcher and engineer might
realize the effect of parameters, which parameter, and how
the value can proceed quickly to overtake the other waves.
Through the images, we can effectively analyze the effect of
fractional power and parameters on the wave solutions,
and observe the potential changes of characteristics of waves.

6. Conclusions

We have successfully achieved the solitary wave solutions of
a class of the conformable sFB and the tFSTO models via the
proposed resourceful integral MKM. Periodic, topological
kink, singular kink, peakon soliton, and periodic wave soli-
ton solutions are derived by the straight forward approach.
The retrieved explicit solutions are presented in a more gen-
eral form of the fractional differential models. The impact of
fractionality on the wave shape and its deformation is ana-
lyzed and discussed graphically. Beside this, we achieved
multishock wave solutions to the both fractional models
and showed the parametric effect on the changes of shock
waves. To visualize the real properties of the solutions, the
graphical elucidation in 3D and 2D profiles of the gained
solutions are presented for suitable parametric selection.
Moreover, the generalized Kudryashov [12, 13] and the
extended Kudryashov methods [14] are the special cases of
this proposed MKM. From our computational effort and
achievement, we emphasize that the proposed scheme is very
simple, highly effective, and a powerful mathematical tool to
extract exact solitary wave solutions of both differential and
fractional differential models. The achieved solutions are
realistic and appropriate to use and they penetrate the fission
and fusion occurrences in solitons, fluid dynamics, sound
waves in a viscous medium, gas dynamics, and plasma
dynamics.
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