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ABSTRACT 
 

Sustainable management strategies of trees are important for indigenous agroforestry plant 
species, such as Acacia. Senegal (A. Senegal), due to the impacts of  rapid population growth, land 
use and climate change. The objective of this investigation was to predict the spatio-temporal 
distribution of A.senegal in the Gum Arabic belt in Sudan in current (1985–2000) and future climate 
scenarios (2021–2100). Bioclimatic data was used for modeling purposes utilizing Maxent, with the 
assessment of model precision conducted through the utilization of the Area Under the Curve 
(AUC) and shown a high goodness-of-it (AUC=0.905±0.003 ). Significant differences were shown in 
species distribution between current and future periods under selected Shared Socioeconomic 
Pathways (SSPs) of SSP2-4.5 and SSP5-8.5, climate scenario.  Our findings indicated that the 
main predictors influence the distribution of the species were precipitation of wettest quarter and 
maximum temperature of warmest month. Under the current potential distribution (25.4%), it is 
projected that Acacia Senegal would expand 36.2%-87.7% (SSP2-4.5) and 38.9-42.5% (SSP5-8.5). 
It is expected that A.cacia Senegal will create new environments suitable for it due to expected 
climate changes. Hence, the research necessitates the formulation of a strategic plan aimed to 
rehabilitation plantations of Acacia senegal and cultivation these species within existing and 
prospective habitats conducive to their existence.   
 

 
Keywords: Population growth; Acacia senegal; climate change; entropy. 
 
1. INTRODUCTION 
 
Population growth, expansion in agricultural 
areas, and CO2 emissions are crucial threats that 
directly or indirectly affect biodiversity, especially 
within sub-Saharan Africa. Most regions in Africa 
are threatened by climate change [1,2]. Due to 
the social, environmental, and economic 
importance of this arid and semiarid region, its 
greatest threat is climate change, and land 
degradation is caused by unsustainable 
agriculture, overgrazing, desertification, and 
deforestation [3]. Acacia senegal is highly 
significant as a prevalent species within the sub-
Saharan region [4]. Acacia senegal naturally 
occurs either as a common extensive pure stand 
or mixed with other species with good diversity, 
such as semidesert grassland, Anogeissus 
woodland and rocky hill slopes, and the species 
can grow on different soil textures (sandy-light 
loamy soils) [5]. It is a species of tree, and forest 
shrubs have multiple purposes for commercial 
use, food, medicine, and cosmetics. It also 
supports dry-land ecosystems [6–10]. 
 
Geographic shifts in species are caused by 
climate change, especially in Africa [11,12]. For 
instance, some studies are actively focusing on 
understanding how climate change affects the 
geographic shifts of various species by using 
predictive modeling (Maxent) [13-15]. Predictive 
modeling, which relies on environmental data 
sourced from documented occurrence sites, 
plays a pivotal role in analytical biology. It has 
applications in different fields, such as those 

related to the environment, such as sustainable 
management programs of reserves, ecology, 
evolution, and epidemiology. This approach 
enables the prediction of species geographic 
distributions and plays a significant role in 
understanding and addressing biological 
phenomena [16]. Maxent is a proper method for 
addressing insufficient or incomplete information 
to make predictions or extract inferences about 
species distributions in current potential areas or 
new suitable areas. It serves as a general-
purpose tool for analyzing and estimating 
outcomes based on limited data availability. It 
estimates a target probability distribution through 
the identification of the probability distribution 
with maximum entropy. This corresponds to the 
distribution that is most common for species. 
This is achieved by considering a set of 
constraints that represent the limited information 
available regarding the target distribution [17]. 
Maxent has several advantages and drawbacks 
compared to other modeling methods. Some of 
these benefits include leveraging presence data 
and environmental information across the entire 
study area, eliminating the need for absence 
data, and the ability to handle both continuous 
and categorical data, allowing for the 
consideration of the relationships among various 
variables. The presence of effective deterministic 
algorithms ensures convergence to the optimal 
probability distribution with maximum entropy. 
The Maxent probability distribution is defined 
concisely, simplifying analysis and interpretation 
[16,17]. Maxent has been shown to provide 
model with acceptable predictive ability even 
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when few prescience records are available, 
indicating that the model can predict well with 
small sampling presence points. Maxent can 
Handel small sample size, careful variable 
selections and model evaluation are critical when 
working with limited data [18]. The study also 
validate with excellent performance. 
 

2. MATERIALS AND METHODS 
 
2.1 Methodology 
 

2.1.1 Site description 
 
The Gum Arabic belt in the middle of Sudan 
extends from the western border of Sudan to the 
eastern border of Sudan and covers an area of 
approximately 520,000 km2. The Gum Arabic belt 
in Sudan is located between 10°N and 14°N, 
covering 1/5 of the total area of Sudan [19]. 
Sandy soils are predominant in the western 
(Darfur stats) and central (Kordofan's stats) 
regions with pockets of clay soil (vertisol) in 
these areas, while clay soils are commonly found 
in the eastern (Al-Gadarif stat) and (Blue Nile 
stat) regions in the southern region [19,20]. The 
mean annual rainfall in this region ranges 
between 100 and 800 mm [21]. Specifically, the 
study area has diverse tree species dominated 
by many families, such as Fabaceae, 

Apocynaceae, Poaceae, and Balanitaceae              
[22–24]. The natural vegetation is woodland 
savannah dominated by various species, for 
instance, Dichrosta. Cortolaria senegalensis (Al-
Safari Plant) Acacia seyal, Sorghum (Adar), A. 
polyacantha Wild., and Combretum spp. [25]. 
Additionally, in this region, common vegetation 
cover can include poor rangeland and scattered 
woody plants dominated by Acacia species and 
Leptadena pyrotechnica [26]. Recently, in the 
areas to the north of west Darfur, Woodland 
Savanna forest, which forms vegetation cover, 
has been dominated by low rainfall. Herbal 
species include different species, such as Chloris 
gayana, Cassia obtusifolia, and Tribulus 
terrestris, in addition to Acacia being the 
dominant tree species, whereas formerly, 
Savanna woodland species predominated in the 
area [27]. The southern geographical area holds 
a diverse array of species, encompassing fruit-
bearing trees such as Adansonia digitata, 
Balanites aegyptiaca, and Diospyros 
mespiliformis, as well as gum-producing species 
such as Acacia species and Boswellia papyrifera. 
Additionally, it features various other useful 
species, such as Combretum aculeatum and 
Ficus sycomorus, and is utilized                         
locally for medicinal, fodder, and construction 
purposes, as well as for fuelwood production 
[28]. 

 

 
 

Fig. 1. Occurrence of Acacia senegal in Sudan 
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2.2 Data Collection 
 
The input datasets were obtained from 
occurrence points with GIS for the ground data 
used GPS and satellite images collected in 
Sudan for WorldClim for climate data. A total of 
164 geospatial coordinates (longitude and 
latitude) were obtained from fieldwork, the 
National Research Center, and previous 
research carried out in Sudan (Fig. 1). Bioclimate 
data were extracted for current data (1985-2000) 
and future data (2021-2100) from the Coupled 
Model Intercomparison Project Phase 6             
(CMIP6) WorldClim version 2.1. For                      
future climate data for different periods, general 
distribution models (GCMs) were used, and a 
clustering approach was adopted to reduce 
model uncertainty. These datasets were also 
used to predict the distribution of Acacia senegal                   
under current and projected climate               
conditions using the maximum entropy model. 
(Maxent 3.4) 
 
This research utilized version 3.4.4 of the Maxent 
Model, an ecological niche modeling method, to 
predict the potential distribution of Acacia 
senegal under current and projected climatic 
conditions. Future climate data were obtained 
from three general circulation models (GCMs) 
covering the 2021-2040, 2041-2060, 2061-2080, 
2081-20100 time periods. An ensemble of 
climate models was employed, including the 
Goddard Institute for Space Studies (GISS-EC-
1G), Max Planck Institute Earth System Model 1-
2-High Resolution (MPI-ESM1-2-HR), and 
Institute Pierre-Simon Laplace (IPSL) GCMs. 
These models were chosen for ensemble 
integration based on their demonstrated efficacy 
in previous research conducted in Sudan: GISS-
EC-1G, MPI-ESM1-2-HR, and IPSL-CM6A-LR 
[29,30]. Like other East African countries, Sudan 

lacks its own calibrated general circulation model 
(GCM). Different models were applied. 
 
This ensemble of three global climate models 
was used to process the limitations, unsureness, 
that are related to the use of one global climate 
model for strictly predicting future climate trends 
[31]. Several studies have reported that the 
remarkable development of utilizing the multi-
model group technique has emerged as the 
foremost strategy for reducing model uncertainty 
[32]. To combine GCMs with equal weights, 
ArcGIS was used, and arithmetic mean 
arithmetic was commonly applied to combine 
multiple models. Regarding the arithmetic 
average, the arithmetic mean has been 
commonly applied to utilize multiple models, 
such as ArcGIS, which is an ensemble that 
incorporates general circulation models (GCMs) 
with uniform weighting [10]. 
 
The current climatic data were obtained from 
WorldClim version 2.1. This dataset comprises 
climate information spanning the temporal range 
from 1970 to 2000, while future projections 
extend from 2021 to 2100 [33]. The datasets for 
both the present and future climatic conditions 
were acquired with a spatial resolution of 30 
seconds, equivalent to approximately (km)2, and 
were accessed from the WorldClim database. 
Future climate data were sourced from CMIP6, 
demonstrating both qualitative and quantitative 
advancements over prior phases such as CMIP5. 
These improvements encompass a more precise 
representation of physical phenomena, simulated 
variables, and enhanced spatial granularity [10]. 
Furthermore, comparative analyses with CMIP5 
indicate superior performance in terms of 
resolution in CMIP6 [34]. The refined resolution 
in CMIP6 contributes to more substantial 
scientific insights [35]. 

 
Table 1. Variables contributing to prediction 

 

Code Bioclimatic variables Code Bioclimatic variables 

Bio01 Annual Mean Temperature Bio13 Precipitation of Wettest Month 
Bio02 Mean Diurnal Range Bio14 Precipitation of Driest Month 
Bio03 Isothermality Bio15 Precipitation Seasonality 
Bio04 Temperature Seasonality Bio16 Precipitation of Wettest Quarter 
Bio05 Max Temperature of Warmest Month Bio17 Precipitation of Driest Quarter 
Bio06 Min Temperature of Coldest Month Bio18 Precipitation of Warmest Quarter 
Bio07 Temperature Annual Range Bio19 Precipitation of Coldest Quarter 
Bio09 Mean Temperature of Driest Quarter 

  

Bio10 Mean Temperature of Warmest Quarter 
  

Bio11 Mean Temperature of Coldest Quarter 
  

Bio12 Annual Precipitation 
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The CMIP6 utilizes scenarios based on shared 
socioeconomic pathways (SSPs), which can be 
broadly classified into two categories: challenges 
to mitigation efforts and barriers to adaptation 
initiatives. SSP1 exhibits minimal impediments to 
both mitigation and adaptation, emphasizing 
policies focused on improving human welfare, 
promoting the advancement of clean energy 
technologies, and safeguarding natural 
ecosystems. Conversely, regional rivalry (SSP3) 
is marked by significant challenges to both 
mitigation and adaptation, prioritizing nationalist 
policies that address local and regional concerns 
over global priorities. Inequality (SSP4) is 
characterized by considerable challenges to 
adaptation but fewer hurdles to mitigation, 
whereas fossil fuel development (SSP5) faces 
substantial challenges in mitigation but fewer 
obstacles in adaptation efforts. [36]. 
 
In particular, SSP2 (middle of the road) 
delineates a situation characterized by moderate 
hurdles concerning both mitigation and 
adaptation efforts; for trend analysis, two SSPs 
were chosen for scrutiny: SSP2-4.5 and SSP5-
8.5 [36,37]. These scenarios were chosen to 
simulate the distribution patterns of the three 
species under the expected future climate 
conditions. The choice of these SSPs was 
informed by their depiction of both moderate and 
extreme emission trajectories, along with a range 
of mitigation and adaptation approaches. This 
intentional selection enables the analysis of a 
"Middle of the Road" scenario and a "Fossil-
fueled Development" scenario, covering a broad 
spectrum of extremes in contrast to existing 
adaptation and mitigation efforts [12]. 
 

2.3 Data Analysis 
 
Previous studies stated that the decision to utilize 
the Maxent model for the analysis was driven by 
its strong ability to establish relationships 
between environmental variables and species 
presence records, as demonstrated previously 
[15]. Machine learning methods employ species 
presence data and environmental factors to 
estimate species distributions [38], which is 
particularly suited for presence-only records, 
particularly presence-only records [16] Maxent 
has shown superior predictive efficacy in 
comparison to alternative structured decision-
making models such open moddeler, linear 
models, bioclim, GARP and others [13]. 
 

An important advantage of Maxent is its ability to 
mitigate collinearity issues during model training; 

highly correlated predictor variables are 
removed, which has negligible effects on its 
performance [39]. Maxent adeptly manages 
complexity by downplaying the significance of 
redundant variables, effectively addressing 
collinearity issues [15,16]. Maxent achieves an 
optimal balance between model fitting and 
complexity through regularization techniques 
[15]. 
 
2.3.1 Model Accuracy and species Suitability 
 
In this study, model validation was conducted by 
splitting the occurrence points into two segments. 
The training phase utilized 80% of the observed 
species data, while the remaining 20% served as 
test data for validation. To evaluate model 
prediction performance, metrics such as the area 
under the Receiver Operating Characteristic 
(ROC) curve (AUC), True Skill Statistic (TSS), 
and Kappa statistic were employed, as outlined 
by Fu et al. [40]. 
 
The AUC metric is commonly employed to gauge 
model accuracy and selection criteria, as noted 
by Duan et al. [41] Model accuracy was 
assessed by establishing a threshold value for 
the AUC, ranging from 0.5 to 1.0. This threshold 
serves as an indicator of the model's accuracy 
level, as discussed by Braunisch [42,43] 
categorized AUC thresholds as follows: AUC 
≥0.9 (very good), 0.8 < AUC <0.9 (good), 0.7 
<AUC <0.8 (satisfactory), 0.6 <AUC <0.7 
(unsatisfactory), and 0.5 <AUC <0.6 (invalid). 
These thresholds aid in determining the accuracy 
and reliability of the model predictions. The True 
Skill Statistic (TSS) is gaining recognition as a 
valuable metric for evaluating model 
performance, particularly in predicting presence-
absence. It assesses both omission and 
commission errors, as well as chance success, 
on a scale from -1 to +1, where +1 signifies 
perfect agreement. TSS is often calculated by 
comparing model predictions with a validation 
dataset using a confusion matrix. The Kappa 
statistic is widely used to assess models 
predicting presence-absence, determining 
agreement based on an optimal threshold 
derived from the confusion matrix. Evaluation 
categories for Kappa range from excellent to fail, 
with specific thresholds. AUC, Kappa, and TSS 
are commonly employed metrics for model 
evaluation, derived from sensitivity and specificity 
calculations. This study utilized all three 
parameters, with AUC calculated by                          
MaxEnt and Kappa and TSS manually 
computed. 
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The True Skill Statistic (TSS) is increasingly 
valued for evaluating models, according to Arau 
[44] Typically, models predicting presence-
absence are assessed using a confusion matrix, 
comparing predictions with validation sites. TSS 
accounts for omission, commission errors, and 
random guessing, with a scale from -1 to +1 
where +1 signifies perfect agreement. The 
Kappa statistic is another commonly used 
measure, evaluating agreement from an optimal 
threshold in the confusion matrix. Evaluation 
criteria for Kappa vary from excellent to fail. 
AUC, Kappa, and TSS, derived from sensitivity 
and specificity calculations, are widely employed 
metrics for model assessment, as highlighted by 
Konowalik  and Nosol [45]. This study utilized all 
three parameters, with AUC computed by 
MaxEnt and Kappa and TSS manually calculated 
using specific equations (1-6). 
 

 𝑥 = 𝑎 + 𝑏 + 𝑐 + 𝑑                                       (1) 
 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑎+𝑑

𝑥
                             (2)     

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑎

(𝑎+𝑐)
                                     (3)  

 

𝑆𝑝𝑒𝑐𝑖𝑣𝑖𝑡𝑦 =  
𝑑

(𝑏+𝑑)
                                       (4)  

 
 𝑇𝑆𝑆 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑆𝑝𝑒𝑐𝑖𝑣𝑖𝑡𝑦 − −1         (5) 
 

𝐾𝑎𝑝𝑝𝑎 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 =  
(

𝑎+𝑑

2
)_

(𝑎+𝑏)(𝑎+𝑐)(𝑐+𝑑)(𝑑+𝑏)

x2

1−
(𝑎+𝑏)(𝑎+𝑐)(𝑐+𝑑)(𝑑+𝑏)

x2

     (6) 

 

The Maxent method produces continuous raster 
outputs indicating habitat suitability on a scale 
from 0 to 1. This study utilized the 10th percentile 
value to categorize presence and absence maps. 
The model-generated maps were classified using 
Diva GIS 7.5 and ArcGIS 10.1 to identify high-
impact, neutral, low-impact, and new suitable 
areas. This classification yielded four categories, 
shedding light on climate change's potential 
impact on species distribution. 
 

The high-impact zone (Loss) comprises areas 
currently suitable but projected to become 
unsuitable in the future, indicating habitat loss. 
The zone outside the realized niche (Neutral) 
includes currently unsuitable areas projected to 
remain so. Conversely, the low-impact zone 
(Neutral) encompasses stable habitats currently 
and projected to remain suitable despite 
changing climates. Lastly, the new suitable zone 
(Gain) identifies currently unsuitable areas 
expected to become suitable in the future. These 

classifications, derived from binary rasters 
indicating presence (1) and absence (0), offer 
insights into climate change's implications for 
species distribution, informing targeted 
conservation and management strategies. 
 
2.3.2 Data analysis  
 
Statistical analysis was conducted to compare 
potential distributions depicted in current and 
future raster maps obtained from MaxEnt output. 
Point data were extracted using ArcGIS and 
converted to Excel format for compatibility with 
statistical analysis using SPSS version 20 
software. The transition from present to future 
scenarios, based on SSP2-4.5 and SSP5-8.5 
scenarios, was analyzed in temporal segments 
using a nonparametric statistical method. 
Additionally, the magnitude of suitability was 
compared using the same statistical approach. 
 

3 RESULTS 
 
3.1 Model Accuracy 
 
The Maxent model exhibited excellent 
performance, and the outcome of the model was 
acceptable because the outcome reflected 
excellent performance in accurately delineating 
the distributional profile of Acacia senegal, with 
mean training and test AUC metrics of 0.905 
(Fig. 4). Run for Aciaca senegal generated an 
AUC greater than 0.9, indicating great accuracy. 
 

3.2 Thresholds and Suitability 
 
The study established suitability thresholds for 
Acacia senegal, indicating that it is suitable when 
0.36 < P < 0.54, unsuitable when 0 < P < 0.18, 
and extremely suitable when 0.72 < P < 1. These 
thresholds demonstrated statistical significance 
for species distribution classification at a 
significance level of P < 0.05. By utilizing the 
tenth percentile of training presence, the study 
evaluated suitability percentages and their 
effects on habitat suitability throughout the entire 
research area, covering 520,000 km². 
Additionally, a notable discrepancy (p < 0.05) 
was noted in the suitability values between the 
present and future time frames under both SSP 
scenarios (Table 2). The average suitability value 
under SSP2-4.5 exhibited a reduced magnitude 
compared to the present value. In contrast, the 
average suitability value for SSP5-8.5 showed a 
significantly greater magnitude in the future, 
surpassing current suitability thresholds. 
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Fig. 2. Cross-validated AUC (area under the receiver operating characteristic curve) 
 

Table 2. Distribution Threshold Magnitudes across Various Time Slices and SSPs 
 

Period                                           Mean±SD                                      Maximum 

Current 0.095 ± 0.164 0.903 
2021-2040 SSP2-4.5 0.17 ± 0.25 0.988 
2021-2040SSP5-8.5 0.22 ± 0.29 0.983 
2041-2060SSP2-4.5 0.25 ± 0.33 0.997 
2041-2060SSP5-8.5 0.29 ± 0.35 0.994 
2061-2080SSP2-4.5 0.21 ± 0.30 0.993 
2061-2080SSP5-8.5 0.27 ± 0.34 0.997 
2081-2100SSP2-4.5 0.22  ± 0.30 0.995 
2081-2100SSP5-8.5 0.26 ± 0.34 0.98 

 
Table 3. Variable contributions and permutation importance 

 

Variable Definition Percent     
contribution (%) 

Permutation 
importance (%) 

bio16 Precipitation of Wettest Quarter 56.3 3.4 
Bio 5 Max Temperature of Warmest Month 10.5 3.2 
Bio 7 Temperature Annual Range 9.5 1.5 
Bio 19 Precipitation of Coldest Quarter 5.2 3.5 
Bio 4 Temperature Seasonality 4.7 13.3 
Bio13 Precipitation of Wettest Month 2.3 24.2 
Bio 8 Mean Temperature of Wettest Quarter 2.2 12.2 
Bio6 Min Temperature of Coldest Month 2.1 20.8 
Bio15 Precipitation Seasonality 1.9 2.8 
Bio1 Annual Mean Temperature 1.8 0.6 
Bio3 Isothermality 1.2 0.6 
Bio17 Precipitation of Driest Quarter 0.5 0.6 
Bio18 Precipitation of Warmest Quarter 0.5 0.6 
Bio10 Mean Temperature of Warmest Quarter 0.3 0 
Bio12 Annual Precipitation 0.3 7.3 
Bio11 Mean Temperature of Coldest Quarter 0.2 4.2 
Bio 2 Mean Diurnal Range 0.2 1.3 
Bio 9 Mean Temperature of Driest Quarter 0.2 0.1 
Bio14 Precipitation of Driest Month 0 0 
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Fig. 3. Jackknife plot of the regularized training gain for Acacia senegal 
 

Table 4. Acacia senegal distribution in SSP2-4.5 (% and km2) as a proportion of the total study 
area (520000 km2) 

 

Period Potential distribution SSP2-4.5 New suitable area SSP2-4.5 

Area (Km2)               Area (%) Area (Km2)             Area(%) 

Current 132219.6 25.4 ------ ------ 

2020-2040 456001.6 87.7 323782 62.3 

2041-2069 208998.0 40.2 76778.4 14.8 

2061-2080 188166.6 36.2 55947 10.8 

2081-2100 195271.6 37.6 63052 12.3 

 

  

A B 



 
 
 
 

Elhassan et al.; Int. J. Environ. Clim. Change, vol. 14, no. 5, pp. 305-323, 2024; Article no.IJECC.117073 
 
 

 
313 

 

  
 

Fig. 4. Response curves of Acacia senegal to bioclimatic predictors in habitat suitability 
modeling 

Logistic output. A- Precipitation of the wettest quarter (bio16, mm); B- Maximum temperature of the warmest 
month (bio5, °C); C- Annual temperature range (bio7, mm); D- Precipitation of the coldest quarter (bio19, mm). 

 

3.3 Contribution of Variables 
 
The major predictors that made excellent 
contributions to the species distribution were 
precipitation of wettest quarter (bio 16), with a 
percentage contribution of 56.3%; the second 
predictor was the maximum temperature of 
warmest month (bio5), with a percentage of 
10.5%; and the following predictors, with a 
percentage less than 10%, were the temperature 
annual range (bio7), mean temperature of driest 
quarter (bio 9), precipitation of coldest quarter 
(bio 19), and temperature seasonality (bio 4) 
(Table 3). The environmental variable with the 
greatest increase when used in isolation was 
bio16, which therefore appears to have the most 
useful information by itself. The environmental 
variable that decreases the gain the most when it 
is omitted is bio4, which therefore appears to 
have the most information that is not present in 
the other variables. The values shown are 
averages over replicate runs. 
 

3.4 Response of Acacia senegal to 
Bioclimatic Predictors 

 
The precipitation in Acacia senegal significantly 
differed from that in the Wettest Quarter boi16, 
with a peak in its occurrence probability in             
areas with precipitation between 200 and 300 
mm (Fig. 4 A). According to Bioclimatic variable 5 
(Bio5), the occurrence probability of the species 
was greatest at 44 °C (Fig. 4 B). Generally, the 
suitability of the species increased with the 
annual temperature range bio7 (Fig. 4 C). 

However, it decreased with the precipitation of 
the coldest quarter bio19 (Fig. 4 D). 
 
3.5 Distribution of A. Senegal Species 

and Suitable Area Across Present 
and Future Conditions 

 
The Acacia Senegalese plant has been 
discovered across various regions in central 
Sudan within the Gum Arabic Belt, spanning from 
the most extreme west to the most extreme east, 
and has been identified in all the study areas. 
This presence accounts for approximately one-
fifth of Sudan's total area, encompassing both 
ongoing and prospective projects. The observed 
expansion in geographic distribution is attributed 
to the plant's adaptation to a more favorable 
climate, characterized by increased rainfall 
during wetter quarters (bio 16). Notably, the 
impacts of climate change have played a 
significant role, with Acacia Senegalese 
exhibiting pronounced shifts in distribution due to 
these effects (bio 16). 
 
The current extent of the Acacia senegal 
distribution encompasses 132219.6 km2 within a 
total area of 520000 km2. Projections indicate an 
expansion of its range to 456001.6 km2, 
encompassing a span of 25.4% to 87.7% under 
SSP2-4.5 for the 2021–2100 period (Table 4). 
This expansion could result in a potential 
increase in the suitable area ranging from 46% to 
62.3%. Conversely, under SSP5-8.5 conditions 
for the same period, the potential distribution 
may expand to a range of 25.4% - 42.5%, with 
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prospective new suitable areas ranging between 
13.5% - 17.1% (Table 5). 
 
The model's predictive maps displayed 
significant shifts in the anticipated distribution of 
Acacia sensgal from the current distribution to 

the future. This study highlights a notable 
significant increase (p<0.05) in the distribution of 
Acacia sengal under projected future climatic 
conditions, which is particularly evident in the 
SSP2-4.5 scenario, in comparison to their current 
extent (Figs. 1 to 6). 

 
Table 5. Distribution of Acacia senegal in SSP5-8.5 (% and km2) as a proportion of the total 

study area (369 km2) 
 

Period Potential distribution SSP5-8.5 New suitable area  SSP5-8.5 

Area (Km2)               Area (%) Area (Km2)             Area (%) 

Current 132219.6 25.4 ------ ------ 
2020-2040 202098.8 38.9 69879.2 13.5 
2041-2069 220322.4 42.4 88102.8 17 
2061-2080 220921.6 42.5 88702 17.1 
2081-2100 216306.74 41.6 84087.14 16.2 
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Fig. 5. Distribution of (1) current, (2) 2020-2040 SSP2-4.5, (3) 2020-2040 SSP5-8.5, (4) 2041-2060 

SSP2-4.5, (5) 2041-2060 SSP5-8.5, (6) 2061-2080 SSP2-4.5, (7) 2061-2080 SSP5-8.5, (8) 2081-
2100 SSP2-4.5, and (9) 2081-2100 SSP5-8.5 in Acacia senegal 
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4 DISCUSSION and CONCLUSION 
 
4.1 Discussion 
 
Previous studies have shown that biotic and 
abiotic factors have impacts on potential species 
distributions, and climate change plays a crucial 
role in determining these patterns [46]. There is 
ample evidence suggesting that climate change 
will significantly affect the distributions of 
numerous species [47]. Species distribution 
modeling (SDM) is extensively employed to 
assess habitat suitability patterns on a broad 
spatial scale. These models generate detailed 
maps that are invaluable for pinpointing areas 
where conservation efforts are particularly crucial 
or likely to be effective. 
 
In general, species distribution modeling (SDM) 
techniques utilize data on habitat requirements 
obtained from known occurrence sites to forecast 
the potential habitat of species under existing or 
potential future conditions. While these models 
may not precisely indicate the realized niche, 
they do offer pertinent information on habitat 
suitability for a particular species. This 
information can be instrumental in guiding the 
development of sustainable management plans 
[16]. 
 
These data from the derived distribution map are 
valuable for pinpointing suitable areas for 
cultivation and assessing the conservation status 
of target species within reserved forests. It aids 
in identifying appropriate locations for cultivation 
while also evaluating the conservation needs of 
specific species within protected forest areas. 
 
In this study, the maximum entropy algorithm 
(Maxent), a widely utilized species distribution 
modeling (SDM) technique, was employed to 
evaluate habitat suitability for both the cultivation 
and in situ conservation of Acacia senegal by 
different subpopulations under present and future 
(2100) climatic conditions. This study 
incorporated projections of future climate data 
obtained from three global climate models 
(GCMs), namely, GISS-EC-1G, MPI-ESM1-2-
HR, and IPSL, under SSPs 2-4.5 and 5-8.5. 
These climate models indicated notable changes 
anticipated in the study area (Table 4 and               
Table 5). 
 

The results revealed that bio 16 and bio 5 were 
the most significant predictors influencing the 
distribution of Acacia senegal, as shown in Table 
3. [48,49]  

According to our findings, approximately 25.4% 
of Sudan's Gum Arabic area is potentially 
suitable for Acacia senegal, and for the period of 
2021–2100, approximately 46% to 62% of the 
area is potentially suitable for SSP2-4.5, whereas 
the new suitable area ranges from 13.5% to 
17.1%. Significant increases were projected 
under future climatic 2100 scenarios, with 
several currently unsuitable areas becoming 
suitable under all the climatic models. These 
findings can be explained by the significant 
change projected for magnitude in the future, 
surpassing the existing suitability thresholds 
(Table 2). According to the climatic model used 
in this study, the precipitation of the wettest 
quarter with a peak in its occurrence probability 
in areas with precipitation between 200-300 mm 
and the maximum temperature of the warmest 
month and the occurrence probability of the 
species with the highest level at 44°C are 
projected to occur. The precipitation in Acacia 
senegal significantly differed from that in the 
Wettest Quarter, with a peak in its occurrence 
probability in areas with precipitation between 
200 and 300 mm (Fig. 4 A). According to the 
maximum temperature of the warmest month, the 
occurrence probability of the species was 
greatest at 44 °C (Fig. 5). B) 
 
In line with findings from previous research, it is 
crucial to recognize that, apart from climate, 
elevation exerts a significant influence on 
species distribution [48], while soil composition 
also contributes to shaping species distributions 
[49]. 
 
The impact of climate change is evident in 
various species, as they undergo alterations in 
cover, distribution, and genetic makeup within 
their respective climatic zones [50]. Research 
suggests that plants thrive predominantly in 
areas with suitable climatic conditions and 
subsequently adapt to changes in climate. This 
phenomenon implies that as climatic conditions 
continue to shift, species, including Acacia 
senegal, will likely experience more pronounced 
changes in distribution over time [51]. Global 
warming may magnify these changes, 
particularly in arid and semiarid regions, which 
are fragile ecosystems [52]. The study area, 
known as the GumArab belt, exhibits diverse 
climatic conditions conducive to plant species 
with high drought tolerance. Predominantly found 
in dry and semiarid regions, especially in sandy 
soils, Acacia senegal is a prime example of a 
species that is well adapted to such 
environments. In response to climatic changes, 
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the distribution of this species may shift toward 
the western part of the Gum Arabic belt in search 
of suitable climatic conditions for adaptation.           
The current study of Acacia senegal, which is 
located mainly in the Gum Arabic belt,   
represents a significant area suitable for the 
future [54]. 

 
5.3 Conclusion 
 
This study concluded that strategically planting 
and protecting these species is essential due to 
their significant environmental and economic 
contributions in both present and anticipated 
suitable areas. This study aimed to enhance 
ecosystem services and guarantee the continued 
survival of these species amidst changing 
climates. The study showed that under current 
climatic conditions, it is possible to grow the 
Acacia Senegalese plant and expand its 
cultivation in large areas of Sudan within the 
Gum Arabic Belt. In addition, suitable 
environmental conditions include a wide range of 
potentially favorable areas for this species in situ, 
and the future climate (2100) will increase the 
suitability of this habitat. With such a clear 
positive effect of climate on its suitable habitat, 
Acacia Senegal can be considered a good 
candidate for an ecosystem service and 
ecosystem-based adaptation approach to 
address climate change. 
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