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We study the correlation between the fermion composite system and quark spins by using the light-cone quark–diquark model. We 
do the calculations for �-quark and �-quark in the fermion system by considering different polarization configurations of both. �e 
contribution from scalar and axial-vector diquarks is taken into account. �e overlap representation of light-front wavefunctions 
is used for the calculations. �e spin–spin correlations for � and � quarks are presented in transverse impact-parameter plane and 
transverse momentum plane as well.

1. Introduction

To get precise information of hadrons in terms of its constituents, 
Wigner distributions of quark and gluon were introduced by Ji 
[1, 2]. Wigner distribution is a quantum phase-space distribution 
concealing the joint position and momentum space distribution 
on the internal structure of the hadron. As these distributions 
are quasi-probabilistic distributions, one cannot measure them 
directly. Applying certain limits on Wigner distributions 
provide the probabilistic three-dimensional distributions 
namely generalized parton distributions (GPDs) [3–6] and 
transverse momentum-dependent distributions (TMDs)  
[7–10]. �e reduction to GPDs is based on the integration of 
five-dimensional Wigner distributions over transverse 
momentum at zero skewness. While at the forward limit, i.e., 
when there is no momentum transfer from initial to final state 
of hadron (Δ⊥ = 0), the TMDs can be obtained by integrating 
Wigner distributions over transverse impact-parameter 
co-ordinates. Further integrating GPDs upon certain limits 
leads to obtaining parton distribution functions (PDFs), charge 
distributions, form factors, etc. [11–18]. Wigner distributions 
are also supportive for evaluating the spin–spin correlations 
between a spin-1/2 composite system and a quark inside the 
fermion system. �eoretical studies on quark and gluon Wigner 
distributions in spin-1/2 and spin-0 composite systems have 
been successfully carried out in Refs. [19–27].

�e spectator model formulated in light-cone framework 
[28–31] is used to evaluate the Wigner distributions as it is 
successful in evaluating T-even and T-odd TMDs of the proton 
[7]. �e model is successful in explaining the standard parton 
distribution functions, quasi-parton distribution functions 
[32]. Further, in Ref. [33], the authors analyse the agreement 
of quasi-GPDs with the standard GPDs. �e concept of qua-
si-PDF is carried out in Refs. [34–39]. Since, the fermion com-
posite system is considered to be a bound state of three quarks, 
i.e., ���, the spectators are assumed to be scalar or axial-vector 
depending upon the spin, i.e., either spin-0 or spin-1. In this 
work, we investigate the correlation between the quark spin 
and spin of fermion system by using the Wigner distributions 
evaluated in Ref. [27]. �e quark Wigner distributions were 
calculated by considering different configuration combina-
tions of quark spin direction and proton spin direction. �e 
overlap representation of light-front wavefunctions is taken 
into account to evaluate the Wigner operators having different 
cases, depending upon the polarization of quark, i.e., either 
unpolarized, longitudinally-polarized or transversely-polar-
ized. �e Wigner operator is associated with the Wigner dis-
tributions by a Fourier transformation of total momentum 
transferred to the final state of the system. Furthermore, we 
include the longitudinal polarization vector into the LFWFs 
along with the transverse polarization vector, and evaluate the 
Wigner distribution using the overlap form of these LFWFs. 
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A�erwards, we take the difference between both respective 
Wigner distributions, i.e., including the longitudinal polari-
zation vector (�(�푎)�푙) and by not including the longitudinal 
polarization vector (�(�푎)). �e aim behind the determination 
of difference between the Wigner distributions is just to get 
the effect of longitudinal polarization vector in LFWFs. 

�e plan of the paper is as follows. In Section 2, we briefly 
discuss about the light-front quark–diquark model used. In 
Section 3, the definitions of Wigner distribution in terms of 
polarization configurations of quark and spin-1/2 composite 
system are given. We also introduce various spin–spin 
correlations between the quark and composite system in this 
section. Further, in Section 4, we evaluate the difference 
between the correlators related to the Wigner distributions in 
terms of overlap form of LFWFs for the cases where 
longitudinal polarization vector is taken into account as well 
as the case without longitudinal polarization vector. Also, the 
results of different spin–spin correlations are discussed. At 
last, the summary and conclusions are presented in Section 5.

2. Light-Front Quark–Diquark Model

In the light-front quark–diquark model, the spin-1/2 compos-
ite system is considered to be a bound state of a quark and a 
diquark. In this model, a valence quark interacts with the 
external photon, and the other two valence quarks bound 
together are treated as a single diquark state. Here, the diquark 
can be scalar (spin-0) or axial-vector (spin-1). �e composite 
spin-1/2 particle state |Ψ; �푆⟩ is defined as

Here, the scalar–isoscalar diquark state, vector–isoscalar 
diquark state, and vector–isovector diquark state are denoted 
by |�푢 �푠⟩0, ������ �0⟩, and ������ �1⟩, respectively.

�e hadronic light-cone Fock state ����Ψ(�푃
+,P⊥, �푆�푧)⟩ expan-

sion in terms of constituent eigenstates is defined as [40]

where �푥�푖 = �푝+
�푖 /�푃+ is light-cone momentum fraction and p⊥�푖 is 

the relative momentum of the �th constituent of the hadron. 
�e helicity of �푖�푡ℎ constituent is denoted by ��. �e Fock states 
of �-particle are normalized as follows

As the system is considered as a two-particle system (a quark 
and a diquark), therefore, by substituting �푛 = 2, the Fock state 
expansion for scalar diquark (������ �0⟩) leads to

(1)|Ψ; ±⟩ = �푐�푠
�����푢 �푠0⟩± + �푐�푎

�����푢 �푎0⟩± + �푐�耠�푎
�����푑 �푎1⟩±.

(2)

�儨�儨�儨�儨Ψ(�푃
+,P⊥, �푆�푧)⟩ =∑

�푛,�휆�

∫
�푛
∏
�푖=1

�푑�푥�푖�푑2p⊥�푖

√�푥�푖16�휋3 16�휋
3�훿(1 −

�푛
∑
�푖=1

�푥�푖)

⋅ �훿(2)(
�푛
∑
�푖=1

p⊥�푖) × �儨�儨�儨�儨�푛; �푥�푖�푃+, �푥�푖P⊥

+p⊥�푖, �휆�푖⟩�휓�푛(�푥�푖, p⊥�푖, �휆�푖),

(3)
⟨�푛; �푝�耠+

�푖 , p�耠
⊥�푖, �휆�耠

�푖
�儨�儨�儨�儨�푛; �푝

+
�푖 , p⊥�푖, �휆�푖⟩

=
�푛
∏
�푖=1

16�휋3�푝+
�푖 �훿(�푝�耠+

�푖 − �푝+
�푖 )�훿(2)(p�耠

⊥�푖 − p⊥�푖)�훿�휆�
��휆�
.

Similarly, the expansion of axial-vector diquark component is 
expressed as

where the respective helicities of quark and diquark are 
denoted by �� and ��. Here, � can be �-quark or �-quark and 
� denotes the axial vector diquark, either isoscalar or 
isovector.

�e wavefunctions related to the scalar diquark are defined 
as [7]

with

Similarly, the wavefunctions related to axial-vector diquark 
are defined as

(4)

�儨�儨�儨�儨�儨�푢 �푠0(�푃+, p⊥)⟩
± = ∑

�휆�

∫ �푑�푥�푑2p⊥
√�푥(1 − �푥)16�휋3�휓

±
�휆�
(�푥, p⊥)

�儨�儨�儨�儨�儨�푥�푃
+, p⊥, �휆�푞⟩.

(5)

�儨�儨�儨�儨�휇 �푉(�푃+, p⊥)⟩
±

= ∑
�휆� ,�휆�

∫ �푑�푥�푑2p⊥
√�푥(1 − �푥)16�휋3�휓

±
�휆��휆�

(�푥, p⊥)
������푥�푃

+, p⊥, �휆�푞, �휆�퐷⟩,

(6)

�휓+
+(�푥, p⊥) =

�푚 + �푥�푀
�푥 �휑(�푥, p⊥),

�휓+
−(�푥, p⊥) = −

�푝�푥 + �푖�푝�푦

�푥 �휑(�푥, p⊥),

�휓−
+(�푥, p⊥) =

�푝�푥 − �푖�푝�푦

�푥 �휑(�푥, p⊥),

�휓−
−(�푥, p⊥) =

�푚 + �푥�푀
�푥 �휑(�푥, p⊥),

(7)

�휑(�푥, p⊥) = − �푔�푠
√1 − �푥

�푥(1 − �푥)
p2
⊥ + [�푥�푀2

�푠 + (1 − �푥)�푚2 − �푥(1 − �푥)�푀2]
.

(8)

�휓+
+(1/2) + 1(�푥, p⊥) =

(�푝�푥 − �푖�푝�푦)
�푥(1 − �푥) �휙(�푥, p⊥),

�휓+
+(1/2) − 1(�푥, p⊥) = −

(�푝�푥 + �푖�푝�푦)
(1 − �푥) �휙(�푥, p⊥),

�휓+
−(1/2) + 1(�푥, p⊥) =

(�푚 + �푥�푀)
�푥 �휙(�푥, p⊥),

�휓+
−(1/2) − 1(�푥, p⊥) = 0,

(9)

�휓−
+(1/2)+1(�푥, p⊥) = 0,

�휓−
+(1/2)−1(�푥, p⊥) = −(�푚 + �푥�푀)

�푥 �휙(�푥, p⊥),

�휓−
−(1/2)+1(�푥, p⊥) = −

(�푝�푥 − �푖�푝�푦)
(1 − �푥) �휙(�푥, p⊥),

�휓−
−(1/2)−1(�푥, p⊥) =

(�푝�푥 + �푖�푝�푦)
�푥(1 − �푥) �휙(�푥, p⊥).

(10)

�휙(�푥, p⊥) = − �푔�푎
√1 − �푥

�푥(1 − �푥)
p2
⊥ + [�푥�푀2

�푎 + (1 − �푥)�푚2 − �푥(1 − �푥)�푀2]
.
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�e above wavefunctions for axial-vector diquark are defined 
corresponding to the light-cone transverse polarization vec-
tors satisfying �휖(±) ⋅ �휖∗(±) = −1, �휖(±) ⋅ �휖∗(∓) = 0 and 
(�푃 − �푝) ⋅ �휖(±) = 0 given below:

In addition to this, the third longitudinal polarization vector 
is also included with the transverse polarization vectors. It 
satisfies �휖(0) ⋅ �휖∗(0) = −1, �휖(0) ⋅ �휖∗(±) = 0, and (�푃 − �푝) ⋅ �휖(0) = 0.

�e light-cone wavefunctions corresponding to above longi-
tudinal polarization vector are defined as

where ��, � and � are axial-vector diquark mass, spin-1/2 
particle mass, and constituent quark mass, respectively.

3. Wigner Distributions and Spin–Spin 
Correlations

�e five-dimensional Wigner distribution of quark, also 
known as quantum phase-space distribution, is defined as [41]

where the correlator �푊[Γ](Δ⊥, k⊥, �푥; �푆) is

Here, Γ defines the Dirac gamma matrices and Γ = �훾+, �훾+�훾5,
���푗+�5. �e states of the composite system are defined in Eqs. 
(4) and (5) based on whether the diquark is scalar or 

(11)�휖(�푃 − �푝,+) = [
�푝�푥 + �푖�푝�푦

√2(1 − �푥)�푃+ , 0,−
1
√2

,− �푖
√2

],

(12)�휖(�푃 − �푝,−) = [−
�푝�푥 − �푖�푝�푦

√2(1 − �푥)�푃+ , 0,
1
√2

,− �푖
√2

].

(13)

�휖(�푃 − �푝, 0) = 1
�푀�푎

[ p2
⊥ −�푀2

�푎
2(1 − �푥)�푃+ , (1 − �푥)�푃+,−�푝�푥,−�푝�푦].

(14)

�휓+
+0(�푥, p⊥) =

p2
⊥ − �푥�푀2

�푎 − �푚�푀(1 − �푥)2
√2�푥(1 − �푥)�푀�푎

�휙(�푥, p⊥),

�휓+
−0(�푥, p⊥) =

(�푚 +�푀)
√2�푀�푎

(�푝�푥 + �푖�푝�푦)�휙(�푥, p⊥),

�휓−
+0(�푥, p⊥) =

(�푚 +�푀)
√2�푀�푎

(�푝�푥 − �푖�푝�푦)�휙(�푥, p⊥),

�휓−
−0(�푥, p⊥) = −p

2
⊥ − �푥�푀2

�푎 − �푚�푀(1 − �푥)2
√2�푥(1 − �푥)�푀�푎

�휙(�푥, p⊥),

(15)

�휌[Γ](b⊥, k⊥, �푥, �푆) ≡ ∫ �푑2Δ⊥

(2�휋)2
�푒−�푖Δ⊥ ⋅b⊥�푊[Γ](Δ⊥, k⊥, �푥, �푆),

(16)

�푊[Γ](Δ⊥, k⊥, �푥; �푆)

= 1
2 ∫ �푑�푧−�푑2�푧⊥

(2�휋)3
�푒�푖�푘⋅�푧⟨�푃�耠�耠; �푆

�儨�儨�儨�儨�儨�儨�儨�̄휓(−
�푧
2)ΓW[−(�푧/2),(�푧/2)]

⋅�휓(�푧2)
�儨�儨�儨�儨�儨�儨�儨�푃

�耠; �푆⟩
�儨�儨�儨�儨�儨�儨�儨�푧+=0

.

axial-vector. By substituting Eqs. (4) and (5) in Eq. (16), one 
can get the overlap form of the Wigner distribution.

�e phase-space distributions based on the configurations 
of various polarizations, i.e., ���, where � defines the polari-
zation of composite system and � stands for the polarization 
of quark, are defined as [24, 25, 27]

and finally the pretzelous Wigner distribution as

Here, in the subscript of Wigner distributions, �, � and � explains 
whether the quark or a fermion composite system is unpolarized, 
longitudinally-polarized or transversely-polarized.

(17)

�휌�푈�푈(b⊥, p⊥, �푥)

= 1
2[�휌

[�훾+](b⊥, p⊥, �푥; +�̂푆�푧) + �휌[�훾
+](b⊥, p⊥, �푥; −�̂푆�푧)],

(18)

�휌�푈�퐿(b⊥, p⊥, �푥)

= 1
2[�휌

[�훾+�훾5](b⊥, p⊥, �푥; +�̂푆�푧) + �휌[�훾
+�훾5](b⊥, p⊥, �푥; −�̂푆�푧)],

(19)

�휌�푗
�푈�푇(b⊥, p⊥, �푥)

= 1
2[�휌

[�푖�휎+�푗�훾5](b⊥, p⊥, �푥; +�̂푆�푧) + �휌[�푖�휎
+�푗�훾5](b⊥, p⊥, �푥; −�̂푆�푧)],

(20)

�휌�퐿�푈(b⊥, p⊥, �푥)

= 1
2[�휌

[�훾+](b⊥, p⊥, �푥; +�̂푆�푧) − �휌[�훾
+](b⊥, p⊥, �푥; −�̂푆�푧)],

(21)

�휌�퐿�퐿(b⊥, p⊥, �푥)

= 1
2[�휌

[�훾+�훾5](b⊥, p⊥, �푥; +�̂푆�푧) − �휌[�훾
+�훾5](b⊥, p⊥, �푥; −�̂푆�푧)],

(22)

�휌�푗
�퐿�푇(b⊥, p⊥, �푥)

= 1
2[�휌

[�푖�휎+�푗�훾5](b⊥, p⊥, �푥; +�̂푆�푧) − �휌[�푖�휎
+�푗�훾5](b⊥, p⊥, �푥; −�̂푆�푧)],

(23)

�휌�푖
�푇�푈(b⊥, p⊥, �푥)

= 1
2[�휌

[�훾+](b⊥, p⊥, �푥; +�̂푆�푖) − �휌[�훾
+](b⊥, p⊥, �푥; −�̂푆�푖)],

(24)

�휌�푖
�푇�퐿(b⊥, p⊥, �푥)

= 1
2[�휌

[�훾+�훾5](b⊥, p⊥, �푥; +�̂푆�푖) − �휌[�훾
+�훾5](b⊥, p⊥, �푥; −�̂푆�푖)],

(25)

�휌�푇�푇(b⊥, p⊥, �푥)

= 1
2�훿�푖�푗[�휌

[�푖�휎+�푗�훾5](b⊥, p⊥, �푥; +�̂푆�푖) − �휌[�푖�휎
+�푗�훾5](b⊥, p⊥, �푥; −�̂푆�푖)],

(26)

�휌⊥
�푇�푇(b⊥, p⊥, �푥)

= 1
2�휖�푖�푗[�휌

[�푖�휎+�푗�훾5](b⊥, p⊥, �푥; +�̂푆�푖) − �휌[�푖�휎
+�푗�훾5](b⊥, p⊥, �푥; −�̂푆�푖)].



Advances in High Energy Physics4

4. Results

Using the overlap form of LFWFs for axial-vector diquark, the 
difference between the Wigner operators for the case where 
longitudinal polarization vector is included and for the case 
where the longitudinal polarization vector is not included 
(from Eqs. (9) and (14)), we have

(33)

�푊(�푎)�푙
�푈�퐿 −�푊(�푎)

�푈�푈

= 1
16�휋3[

(p�耠�耠
⊥
2 − �푥�푀2

�푎 − �푥�푀(1 − �푥)2)(p�耠
⊥
2 − �푥�푀2

�푎 − �푥�푀(1 − �푥)2)
�푥2(1 − �푥)2

+ (�푚 +�푀)
2�푀2

�푎�푥2 (p2
⊥ − (1 − �푥)2

4 Δ2
⊥)]�휙†(�푥, p�耠�耠

⊥)�휙(�푥, p�耠
⊥),

(34)

�푊(�푎)�푙
�푈�퐿 −�푊(�푎)

�푈�퐿 = �푖
16�휋3

(�푚 +�푀)2

2�푀2
�푎�푥2 (1 − �푥)(�푝�푥Δ �푦 − �푝�푦Δ �푥)

⋅ �휙†(�푥, p�耠�耠
⊥)�휙(�푥, p�耠

⊥),

(35)

�푊(�푎)�푙
�푈�푇 −�푊(�푎)

�푈�푇 = �푖
16�휋3

(�푚 +�푀)
2�푀2

�푎�푥2 [(p�耠�耠
⊥
2 − �푥�푀2

�푎 − �푥�푀(1 − �푥)2)

⋅ (�푝�푦 −
(1 − �푥)

2 Δ �푦) + (p�耠
⊥
2 − �푥�푀2

�푎 − �푥�푀(1 − �푥)2)

⋅ (�푝�푦 +
(1 − �푥)

2 Δ �푦)]�휙†(�푥, p�耠�耠
⊥)�휙(�푥, p�耠

⊥),

(36)

�푊(�푎)�푙
�퐿�푈 −�푊(�푎)

�퐿�푈 = − �푖
16�휋3

(�푚 +�푀)2

2�푀2
�푎�푥2 (1 − �푥)(�푝�푥Δ �푦 − �푝�푦Δ �푥)

⋅ �휙†(�푥, p�耠�耠
⊥)�휙(�푥, p�耠

⊥),

(37)

�푊(�푎)�푙
�퐿�퐿 −�푊(�푎)

�퐿�퐿

= 1
16�휋3[

(p�耠�耠
⊥
2 − �푥�푀2

�푎 − �푥�푀(1 − �푥)2)(p�耠
⊥
2 − �푥�푀2

�푎 − �푥�푀(1 − �푥)2)
�푥2(1 − �푥)2

− (�푚 +�푀)
2�푀2

�푎�푥2 (p2
⊥ − (1 − �푥)2

4 Δ2
⊥)]�휙†(�푥, p�耠�耠

⊥)�휙(�푥, p�耠
⊥),

(38)

�푊(�푎)�푙
�퐿�푇 −�푊(�푎)

�퐿�푇 = 1
16�휋3

(�푚 +�푀)
2�푀2

�푎�푥2 [(p�耠�耠
⊥
2 − �푥�푀2

�푎 − �푥�푀(1 − �푥)2)

⋅ (�푝�푥 −
(1 − �푥)

2 Δ �푥) + (p�耠
⊥
2 − �푥�푀2

�푎 − �푥�푀(1 − �푥)2)

⋅ (�푝�푥 +
(1 − �푥)

2 Δ �푥)]�휙†(�푥, p�耠�耠
⊥)�휙(�푥, p�耠

⊥),

(39)

�푊(�푎)�푙
�푇�푈 −�푊(�푎)

�푇�푈 = 1
16�휋3

(�푚 +�푀)
2�푀2

�푎�푥2 [(p�耠�耠
⊥
2 − �푥�푀2

�푎 − �푥�푀(1 − �푥)2)

⋅ (�푝�푥 −
(1 − �푥)

2 Δ �푥) − (p�耠
⊥
2 − �푥�푀2

�푎 − �푥�푀(1 − �푥)2)

⋅ (�푝�푥 +
(1 − �푥)

2 Δ �푥)]�휙†(�푥, p�耠�耠
⊥)�휙(�푥, p�耠

⊥),

To extract information about the correlation between 
quark spin and fermion system spin, the Wigner distributions 
of quarks in the proton having different helicities are evaluated. 
For Γ = �훾+(1 + �휆�훾5)/2 and 

�㨀→�푆 = Λ�̂푆�, the longitudinal Wigner 
distribution of the quark in the fermion system having helic-
ities � and Λ, respectively, is defined as

�e above equation can be expressed in terms of polarization 
configurations of quark and proton as

For the quark Wigner distributions, considering the spin 
directions of quark and composite system to be in the longi-
tudinal direction, the helicities Λ and � take different forms, 
i.e., Λ =↑, ↓ and �휆 =↑, ↓.

Similar to the longitudinal Wigner distributions, the 
Wigner distributions for quark having the transverse polari-
zation �휆⊥ =⇑, ⇓ in the composite system having transverse 
polarization Λ ⊥ =⇑, ⇓, for Γ = (�훾+ + Λ ⊥�푖�휎�푗+�훾5)/2 and �㨀→�푆 = Λ ⊥�̂푆�푖 is given as

In terms of polarization configurations, the above equation 
can be expressed as

Further, for the quark having spin in longitudinal direction 
and fermion system spin in transverse direction and vice-
versa, the respective Wigner distributions ��푖

Λ ⊥�휆 and ��푗
Λ�휆⊥

 are 
defined as

and

(27)

�휌Λ�휆(b⊥, p⊥, �푥)

= 1
2[�휌

[�훾+](b⊥, p⊥, �푥, Λ�̂푆�푧) + �휆�휌[�훾
+�훾5](b⊥, p⊥, �푥, Λ�̂푆�푧)].

(28)

�휌Λ�휆(b⊥, p⊥, �푥) =
1
2[�휌�푈�푈(b⊥, p⊥, �푥) + Λ�휌�퐿�푈(b⊥, p⊥, �푥)

+�휆�휌�푈�퐿(b⊥, p⊥, �푥) + Λ�휆�휌�퐿�퐿(b⊥, p⊥, �푥)].

(29)

�휌Λ ⊥�휆⊥
(b⊥, p⊥, �푥) =

1
2[�휌

[�훾+](b⊥, p⊥, �푥, Λ ⊥�̂푆�푖)

+Λ ⊥�휌[�푖�휎
�푗+�훾+](b⊥, p⊥, �푥, Λ ⊥�̂푆�푖)].

(30)

�휌�푖
Λ ⊥�휆⊥

(b⊥, p⊥, �푥) =
1
2[�휌�푈�푈(b⊥, p⊥, �푥) + Λ ⊥�휌�푖

�푇�푈(b⊥, p⊥, �푥)

+ �휆⊥�휌�푖
�푈�푇(b⊥, p⊥, �푥)+Λ ⊥�휆⊥�휌�푇�푇(b⊥, p⊥, �푥)].

(31)

�휌�푖
Λ ⊥�휆(b⊥, p⊥, �푥) =

1
2[�휌�푈�푈(b⊥, p⊥, �푥) + Λ ⊥�휌�푖

�푇�푈(b⊥, p⊥, �푥)

+�휆�휌�푈�퐿(b⊥, p⊥, �푥) +Λ ⊥�휆�휌�푖
�푇�퐿(b⊥, p⊥, �푥)]

(32)

�휌�푗
Λ�휆⊥

(b⊥, p⊥, �푥) =
1
2[�휌�푈�푈(b⊥, p⊥, �푥) + Λ�휌�퐿�푈(b⊥, p⊥, �푥)

+ �휆⊥�휌
�푗
�푈�푇(b⊥, p⊥, �푥)+Λ�휆⊥�휌

�푗
�퐿�푇(b⊥, p⊥, �푥)].



5Advances in High Energy Physics

where � and � are the composite particle and quark polari-
zations, respectively.

In this work, the DGLAP region for quarks is used to eval-
uate the Wigner distributions, i.e., 0 < �푥 < 1. �e respective 
momenta of initial and final state of struck quark in symmetric 
frame are defined as

�e superposition of scalar and axial-vector diquark results 
into the quark flavors as [7]

(42)�휌�푋�푌(b⊥, p⊥, �푥, �푆) = ∫ �푑2Δ⊥

(2�휋)2
�푒−�푖Δ⊥ ⋅b⊥�푊�푋�푌(Δ⊥, p⊥, �푥, �푆),

(43)

p�耠
⊥ = p⊥ − (1 − �푥)Δ⊥

2 ,

p
�耠�耠
⊥ = p⊥ + (1 − �푥)Δ⊥

2 .

Further, the correlator ��� is related to the Wigner distribution 
as

(40)

�푊(�푎)�푙
�푇�퐿 −�푊(�푎)

�푇�퐿 = − �푖
16�휋3

(�푚 +�푀)
2�푀2

�푎�푥2 [(p�耠�耠
⊥
2 − �푥�푀2

�푎 − �푥�푀(1 − �푥)2)

⋅ (�푝�푦 −
(1 − �푥)

2 Δ �푦) + (p�耠
⊥
2 − �푥�푀2

�푎 − �푥�푀(1 − �푥)2)

⋅ (�푝�푦 +
(1 − �푥)

2 Δ �푦)]�휙†(�푥, p�耠�耠
⊥)�휙(�푥, p�耠

⊥),

(41)

�푊(�푎)�푙
�푇�푇 −�푊(�푎)

�푇�푇

= − 1
16�휋3[

(p�耠�耠
⊥
2 − �푥�푀2

�푎 − �푥�푀(1 − �푥)2)(p�耠
⊥
2 − �푥�푀2

�푎 − �푥�푀(1 − �푥)2)
�푥2(1 − �푥)2

+ (�푚 + �푥�푀)2

2�푀2
�푎�푥2 ((�푝2

�푥 − �푝2
�푦) −

(1 − �푥)2
4 (Δ2

�푥 − Δ2
�푦))]�휙†(�푥, p�耠�耠

⊥)�휙(�푥, p�耠
⊥).
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Figure 1: �e plot of Wigner distribution �휌↑↑(b⊥, p⊥) in transverse impact-parameter plane and transverse momentum plane for �-quark 
(le� panel) and �-quark (right panel).
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plane. �e distribution shows circular behaviour with the peaks 
shi�ing towards �푏� < 0 and �푝� < 0 in impact-parameter plane 
and momentum plane, respectively. In momentum plane, as 
shown in Figures 1(c) and 1(d), we observe the distortion along 
�� at the higher values of impact-parameter co-ordinate. In this 
model, the distributions ��� and ��� are same for axial-vector 
diquark. Based on the different combinations of helicities, we 
get the different cases from Eq. (16) as follows,    

where the superscripts (�푠), (�푎), and (��) denote the scalar–isos-
calar, vector–isoscalar and vector–isovector diquarks, respec-
tively. �e mass values and couplings for diquarks have been 
summarized in Table 1.

We plot the Wigner distributions of the quark in the fer-
mion system having spins in longitudinal direction, i.e., �Λ�휆. 
Here, we take two cases for the discussion on the longitudinal 
Wigner distributions: (i) spin direction of composite system 
and quark to be Λ =↑ and �휆 =↑, i.e., �↑↑, (ii) proton polarization 
Λ =↑ and quark polarization �휆 =↓, i.e., �↑↓. In Figures 1(a) 
and 1(b), we plot the longitudinal distribution �↑↑ for �-quark 
and �-quark, respectively. We see the distribution effects in 
transverse impact-parameter plane and transverse momentum 

(44)
�휌�푢 = �푐2�푠 �휌�푢(�푠) + �푐2�푎�휌�푢(�푎),
�휌�푑 = �푐�耠2�푎 �휌�푑(�푎�),
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Figure 2: �e plot of Wigner distribution �휌↑↓(b⊥, p⊥) in transverse impact-parameter plane and transverse momentum plane for �-quark 
(le� panel) and �-quark (right panel).

Table 1: �e diquark masses �� and couplings �� for the scalar–
isoscalar, vector–isoscalar diquark, and vector–isovector diquark.

Diquark ud (Scalar s) ud  
(Axial-vector a)

uu  
(Axial-vector ��)

�� in GeV 0.822 ± 0.053 1.492 ± 0.173 0.890 ± 0.008
�� 0.847 ± 0.111 1.061 ± 0.085 0.880 ± 0.008
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in case of �-quark as compared to �-quark. In momentum 
plane, the distortion is seen at the center of the �-quark dis-
tribution. �e distribution plots look nearly similar for Λ = �휆 
and Λ ̸= �휆, as Eqs. (45) and (46) contribute the same terms. 
�e polarities are opposite for distribution of Λ = �휆 in p⊥-
plane and b⊥-plane. Since the distribution contributions from 
��� and ��� are circularly symmetric (shown in Ref. [27]), the 
distortion appears in the plots of �↑↑ and �↑↓ due to the addition 
of terms ��� and ���. In other words, the contribution from 
�↑↑ is cirularly symmteric, because the interference of ��� and 
��� is destructive, but when we add the axial vector part along 
with the scalar part to get the distribution of �-quark and �-
quark in proton, the distortion takes place. Similar is the case 
of �↑↓, however here the unpolarized-longitudinal Wigner 
distribution and longitudinal-unplarized Wigner distribution 
interfere destructively in axial-vector diquark case instead in 
scalar-diquark case, constructive interference is there. �ese 

For scalar diquark

For axial-vector diquark

We plot the quark Wigner distribution having respective lon-
gitudinal polarization of quark �휆 =↓ and fermion system Λ =↑ 
in Figure 2. �e distortion is observed in impact-parameter 
plane which gets more noticeable at the increasing values of 
b⊥ for �-quark and �-quark. �e effect of distortion is more 

(45)
�휌↑↑ =

1
2[�휌�푈�푈 + �휌�퐿�퐿],

�휌↑↓ =
1
2[�휌�푈�푈 − 2�휌�푈�퐿 − �휌�퐿�퐿],

(46)
�휌↑↑ =

1
2[�휌�푈�푈 + 2�휌�푈�퐿 + �휌�퐿�퐿],

�휌↑↓ =
1
2[�휌�푈�푈 − �휌�퐿�퐿].
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Figure 3: �e plot of Wigner distribution �휌⇑⇑(b⊥, p⊥) in transverse impact-parameter plane and transverse momentum plane for �-quark 
(le� panel) and �-quark (right panel).
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Ref. [27], we find that in impact-parameter plane, the distor-
tion comes due to �1

�푈�푇 and �1
�푇�푈, as they show dipolar distribu-

tions except the case of ��� and ���. However, in momentum 
plane, the strong correlation between the distributions ���, 
�1
�푈�푇, �1

�푇�푈 and ���, leads to the circular symmetric behaviour of 
distributions �⇑⇑ and �⇑⇓ for both quarks (as shown in lower 
panels of Figures 3 and 4).        

Further, we plot the distribution �↑⇑ in Figure 5, which 
describes the correlation between spin of quark �휆⊥ =⇑ and 
spin of composite system �휆 =↑. In impact-parameter plane, 
the distortion is clearly visible. �is distortion is due to the 
Wigner distributions ��� and ��� as the dipolar distribution 
from these terms along �� and �� (shown in Ref. [27]) adds up 
resulting in �↑⇑ in this model. Similarly, due to these terms, 
distortion is observed in b⊥-plane in case of �↑⇓ as shown in 
Figure 6. Because of the opposite transverse spin direction of 

interferences when added up accordingly, as Eqs. (45) and 
(46), cause the sideway shi�s of distributions as shown in 
Figures 1 and 2.    

�e transverse Wigner distribution has been plotted in 
Figure 3 for the case with the quark having helicity as �휆 =⇑ in 
the fermion composite system with helicity Λ =⇑. �e distor-
tion in the distribution �⇑⇑ shi�s along the positive �� direction 
in impact-parameter plane for both �-quark and �-quark. In 
p⊥-plane, circularly symmteric distribution is observed, which 
is more focused at the center in case of �-quark, while it 
extends more to the higher values of transverse momentum 
of �-quark. For �⇑⇓, the distortion is in opposite direction of 
�� for �-quark and �-quark when compared with �⇑⇑ in 
impact-parameter plane (as shown in upper panels of  
Figures 3 and 4). In this work, we take the polarization direc-
tion of quark and proton along �-axis. From Eq. (29) and 
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Figure 4: �e plot of Wigner distribution �휌⇑⇓(b⊥, p⊥) in transverse impact-parameter plane and transverse momentum plane for �-quark 
(le� panel) and �-quark (right panel).
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Figure 5: �e plot of Wigner distribution �휌↑⇑(b⊥, p⊥) in transverse impact-parameter plane and transverse momentum plane for �-quark 
(le� panel) and �-quark (right panel).
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and �⇑,↓. �e resulting plotted distortion is along �푏� < 0(�푝� < 0) 
and �푏� > 0(�푝� > 0) for �⇑↑ and �⇑↓, respectively, for � and � 
quarks in b⊥-plane (p⊥-plane).        

5. Conclusions

We have presented the results of spin–spin correlations 
between the �-quark (or �-quark) and fermion composite 
system spins in light-front quark–diquark model evaluated 
from the Wigner distributions. �e contribution from both 
the scalar and axial-vector diquarks is considered to get the 
distributions of � and � quarks. We consider the axial vector 
diquark to be further distinguished between the isoscalar or 
isovector depending upon the realistic analysis. First, we con-
sider the spins of quark and fermion system in longitudinal 

quark in two cases, �↑⇓ causes the distortion along negative �� 
while for �↑⇑, it is in the direction of positive ��. In momentum 
plane, we observe the distortion along negative �� for �-quark 
and �-quark when quark longitudinal spin direction is positive 
and proton transverse spin direction is positive (or negative). 
�e observed distortion is more along negative �� in case of 
�-quark as compared to �-quark for �↑⇑, while for �↑⇓, it is 
more distorted in case of �-quark.        

In Figure 7, we plot the distribution �Λ⊥,�휆, which explains the 
correlation between the transverse spin of composite system and 
longitudinal spin of quark, both along positive directions. Also 
the distortion comes from the correlation between the transverse 
spin of composite system along positive direction and longitudinal 
spin of quark along negative direction, shown in Figure 8. From 
Eq. (31), the distributions ���, ��

��, ���, and ��
�� are summed up 

according to the spin direction of composite system to get �⇑↑ 
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direction, i.e., � and Λ, respectively. Similarly, the correlation 
between transverse spin directions of quark (�⊥) and com-
posite particle (Λ ⊥) is evaluated. Further, the different com-
binations are taken into account, i.e., when quark spin is in 
longitudinal direction and spin of composite particle is in 
transverse direction and vice-versa, i.e., �Λ⊥�휆 and �Λ�휆⊥. All these 
results are presented in transverse impact-parameter plane  
(b⊥-plane) and transverse momentum plane (p⊥-plane). We 
observe that the distortions in the correlations seen in both 
planes are due to the effect of different Wigner distributions.

�e spin–spin correlations are related to the Wigner dis-
tributions and the quantum mechanical version of quark 
Wigner distributions have not yet been measured experimen-
tally. �e measurable quantities can be extracted from Wigner 
distributions by integrating them over transverse position or 
transverse momentum of quark. �ese quantities can be exper-
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