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�e quantum tunneling radiation of fermions with arbitrary spin at the event horizon of Kerr-de Sitter black hole is accurately 
modified by using the dispersion relation proposed in the study of string theory and quantum gravitational theory. �e derived 
tunneling rate and temperature at the black hole horizons are analyzed and studied.

1. Introduction

Lorentz dispersion relation has been regarded as the basic 
relation of modern physics, which is related to general relativity 
and quantum field theory. However, the development of 
quantum gravity theory shows that Lorentz relation must be 
modified in the high energy field. �e dispersion relation 
theory in the high-energy field has not been established and 
needs to be further studied. Nevertheless, it is generally 
believed that the magnitude of such correction is only the 
Planck scale [1–10]. �e dynamical equation of the spin-1/2 
fermion is the Dirac equation in curved space-time, while that 
of spin-3/2 fermion is described by the Rarita–Schwinger 
equation in curved space-time. In 2007, Kerner and Mann et 
al. proposed to study the quantum tunneling of spin-1/2 
fermion using semiclassical theories and methods [11, 12]. 
Subsequently, Yang and Lin studied the quantum tunneling of 
fermions and bosons applying the semiclassical Hamilton–
Jacobi method, and found that the behaviours of fermions and 
bosons could both be described by one same equation—
Hamilton–Jacobi equation, and studied the quantum tunneling 
radiation of various black holes with the Hamilton–Jacobi 
theory and method [13, 14]. In the process of studying the 
thermodynamics of black holes, it is worth mentioning that 
Banerjee and Majhi et al. put forward Hamilton–Jacobi 
method beyond the semiclassical approximation to modify 
the quantum tunnelling of bosons and fermions, and then 
studied the temperature, entropy, and other physical quantities 
of black holes [15, 16]. Zhao et al. conducted effective research 

on Hawking radiation of various black holes [17–19]. What is 
worth studying is that Parikh and Wilczek corrected the 
particle tunneling rate at the event horizon of the black hole 
by taking into account the special and real situation that the 
background space-time changes before and a�er particle 
tunneling [20]. Banerjee and Majhi et al. Further developed 
the mechanism of quantum tunneling through chirality 
method and semiclassical approximation [21–25]. Other 
scholars have also conducted a series of effective studies on 
the quantum tunneling rate and entropy of various black holes 
[26–43]. Science and technology are always developing and 
progressing with the passage of time. �e research on 
theoretical physics, astrophysics and related hot topics can 
always promote the continuous improvement of scientific 
research and bring about knowledge innovation. Recent 
studies show that the modification of Lorentz dispersion 
relation is necessary to modify the particle dynamical equation 
in the space-time of strong gravitational field, which is mainly 
to correct the quantum tunneling of fermions or bosons at the 
event horizon of the black hole, as well as the gravitational 
wave equation in curved space-time can also be modified as 
necessary. �e purpose of this paper is to analyze the physical 
quantities, such as quantum tunneling rate of arbitrary spin 
fermions, black hole temperature, and black hole entropy in 
Kerr-de Sitter black hole space-time. �erefore, in Section 2, 
the Rarita–Schwinger equation, which is the dynamical 
equation of arbitrary spin fermions, will be modified by 
applying the modified Lorenz dispersion relation. In Section 
3 the quantum tunneling radiation of arbitrary spin fermions 
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at horizons of Kerr-de Sitter black hole, which is a rotating, 
stationary, axisymmetric, and with a cosmic horizon black 
hole, is studied. Section 4 includes some conclusions and 
discussions.

2. From the Rarita–Schwinger Equation in Flat 
Space-Time to the Rarita–Schwinger Equation 
in Curved Space-Time

A modified dispersion relation on the quantum scale is given 
by [1–10]

Consider the special case of the modified dispersion relation 
(the speed of light in vacuum � equals unit in the notations), 
where �0 and � are the energy and momentum of particle and 
� is a constant on the Planck scale. When considering �훼 = 2, 
the dynamical equation of the spin-1/2 fermion is known as 
the Dirac equation. In flat space-time it is expressed as

In flat space-time, the more general fermion dynamical equa-
tion was expressed by Rarita–Schwinger as [44]

which satisfies the conditions of �훾�휇�훹�휇�훼2 ⋅⋅⋅ �훼�푘
= �휕

�휇
�훹�휇
�훼2 ⋅⋅⋅�훼�푘

= �훹�휇
�휇�훼3 ⋅⋅⋅ �훼�푘

= 0. In Rarita–Schwinger equation in flat space-
time, generalizing the ordinary differential into the covariant 
differential, and the ordinary derivative into the covariant 
derivative, the Rarita–Schwinger equation of arbitrary spin 
fermions in curved space-time can be obtained as

and it meets the condition of

where the Gamma matrix satisfies the following commutation 
relation

and �� is the operator of covariant derivative in curved space-
time, i.e

where �� is spin connection in curved space-time.
According to formula (1), taking �훼 = 2, we can rewrite the 

Rarita–Schwinger equation in flat space-time as

For the correction on quantum scale, take � as a small correc-
tion term �휎 ≪ 1, therefore, �휎ℏ�훾�푡�휕�푡�훾�푗�휕�푗�훹�훼1 ⋅⋅⋅�훼�푘

 is very small. �e 

(1)�푝2
0 = �푝2 + �푚2 − (�퐿�푝0)

�훼�푝2,

(2)(�훾��휕� +
�푚
ℏ − �푖�퐿�훾��휕��훾��휕�)�훹 = 0.

(3)(�훾�휇�휕�휇 +
�푚
ℏ )�훹�훼1 ⋅⋅⋅�훼�푘

= 0,

(4)(�훾�휇�퐷�휇 +
�푚
ℏ )�훹�훼1 ⋅⋅⋅�훼�푘

= 0,

(5)�훾�휇�훹�휇�훼2 ⋅⋅⋅�훼�푘
= �퐷�휇�훹�휇

�훼2 ⋅⋅⋅�훼�푘
= �훹�휇

�휇�훼3 ⋅⋅⋅�훼�푘
= 0,

(6)�훾��훾� + �훾��훾� = 2g���퐼,

(7)�퐷� = �휕� + �훺� +
�푖
ℏ�푒�퐴�,

(8)(�훾�휇�휕�휇 +
�푚
ℏ − �휎ℏ�훾�푡�휕�푡�훾�푗�휕�푗)�훹�훼1 ⋅⋅⋅�훼�푘

= 0.

matrix Equation (8) is generalized to Kerr-de Sitter curved 
space-time, obtaining

�is matrix equation can only be solved in a specific curved 
space-time. For this purpose, the Fermion wave function is 
set as

where � is the action of fermion with mass �. �e line element 
of Kerr-de Sitter black hole in the Boyer–Lindquist coordinates 
is

which describes a rotating black hole with a cosmic horizon, 
and where

where � is the radius of curvature of the cosmic horizon. 
Obviously, the event horizon �� and the cosmic horizon �� of 
this black hole satisfy the equation, respectively, as

From (11), (12), and (13), we can get

where � is the energy and � is a component of the generalized 
angular momentum of the particles tunneling from the black 
hole. �e electromagnetic potential of the particles �퐴� = 0 in 
this space-time can also be known from expression (11). To 
solve the matrix Equation (9), suppose

Substituting formulas (14) and (15) into Equation (9), and 
Equation (9) is simplified as

From Equation (16) we can obtain

(9)(�훾��퐷� +
�푚
ℏ − �휎ℏ�훾��퐷��훾��퐷�)�훹�1⋅⋅⋅�훼�푘

= 0.

(10)�훹�훼1 ⋅⋅⋅�훼�푘
= �휉�훼1 ⋅⋅⋅�훼�푘

�푒(�푖/ℏ)�푆,

(11)

�푑�푠2 = − Δ �푟

�휒2�휌2 (�푑�푡 − �푎sin2�휃�푑�휑)2

+ Δ �휃sin
2�휃

�휒2�휌2 [�푎�푑�푡 − (�푟2 + �푎2)�푑�휑]2 + �휌2(�푑�푟2
Δ �푟

+ �푑�휃2
Δ �휃

),

(12)

�휌2 = �푟2+�푎2cos2�휃,

Δ �푟 = (�푟2+�푎2)(1 − �푟2

�푙2
) − 2�푀�푟,

Δ �휃 = 1 + �푎2

�푙2
cos

2�휃,

�휒 = 1 − �푎2

�푙2
,

(13)Δ �(�푟�) = 0, Δ�(�푟�) = 0.

(14)�휕��푆 = �푗, �휕��푆 = −�휔,

(15)
Γ� = �푖�훾� − �휎�휔�훾��훾�,
�푚� = �푚 − �휎g ���휔.

(16)
�푖�훾�휇�휕�휇�푆�휉�훼1 ⋅⋅⋅�훼�푘

+ �푚�푘�휉�훼1 ⋅⋅⋅�훼�푘
− �휎�훾�푡�휔�훾�푗�휕�푗�푆�휉�훼1 ⋅⋅⋅�훼�푘

= Γ�휇�휕�휇�푆�휉�훼1 ⋅⋅⋅�훼�푘
+ �푚�푘�휉�훼1 ⋅⋅⋅�훼�푘

= 0.

(17)Γ�휈Γ�휇�휕�휈�푆�휕�휇�푆�휉�훼1 ⋅⋅⋅�훼�푘
− �푚2

�푘�휉�훼1 ⋅⋅⋅�훼�푘
= 0,

(18)Γ�휇Γ�휈�휕�휇�푆�휕�휈�푆�휉�훼1 ⋅⋅⋅�훼�푘
− �푚2

�푘�휉�훼1 ⋅⋅⋅�훼�푘
= 0.



3Advances in High Energy Physics

From Equations (17), (18), and (6) we can get

�is matrix equation can be further simplified as

where

Multiplying both sides of Equation (20) by −�푖�휎�훾��휕��푆, then

�e equivalent equation is

From Equations (21), (22), and (23) above, it can be obtained 
that

�e matrix Equation (24) has a nontrivial solution if the value 
of the determinant corresponding to the eigenmatrix in the 
equation is zero, i.e.

�is equation is actually the dynamical equation of arbitrary 
spin fermions in the black hole space-time represented by (11) 
and (12). �is is a precisely modified particle dynamical equa-
tion. When the correction term is ignored, the equation reverts 
to the Hamilton–Jacobi equation for particles of mass m in 
curved space-time expressed in Equations (11) and (12). 
�erefore, we can think of Equation (25) as the modified 
Rarita-Schwinger equation. �e process of solving Equation 
(25) is the process of solving Equation (9). We only need to 
solve Equation (25) to find the fermion action � and conse-
quently study the characteristics of quantum tunneling radi-
ation at the horizons of the black hole.

3. Tunneling Radiation Characteristics of 
Arbitrary Spin Fermions in Kerr-de Sitter Black 
Hole Space-Time

From Equations (11) and (12), the values of metric determi-
nant and the nonzero components of the contravariant metric 
tensor of the space-time can be calculated, respectively, as

(19)

[g�휇�휈�휕�휇�푆�휕�휈�푆 + �푚2 − 2�푚�휎g �푡�푡�휔 + 2�푖�휎�휔g �푡�훽�휕�훽�푆�훾�휇�휕�휇�푆
+�휎2�휔2(g �푡�푡)2 − �휎2�휔2(g �푡�훽)2(�휕�훽�푆)2]�휉�훼1 ⋅⋅⋅�훼�푘

= 0.

(20)�푖�휎�훾�휇�휕�휇�푆�휉�훼1 ⋅⋅⋅�훼�푘
+ �푚�푑�휉�훼1 ⋅⋅⋅�훼�푘

= 0.

(21)

�푚�푑 = g�휇�휈�휕�휇�푆�휕�휈�푆 + �푚2 − �휔�̃휎
2�휔g �푡�훽�휕�훽�푆 ,

�̃휎 = 2�푚�휎g �푡�푡 − �휎2(g �푡�푡)2�휔 + �휎2�휔(g �푡�훽�휕�훽�푆)2.

(22)[�휎2�훾�휈�훾�휇�휕�휈�푆�휕�휇�푆 + �푚2
�푑]�휉�훼1 ⋅⋅⋅�훼�푘

= 0.

(23)[�휎2�훾�휇�훾�휈�휕�휇�푆�휕�휈�푆 + �푚2
�푑]�휉�훼1 ⋅⋅⋅�훼�푘

= 0.

(24)

{[g�휇�휈�휕�휇�푆�휕�휈�푆 + �푚2 − �휔�̃휎]2 − �휎2�푚2(2�휔g �푡�훽�휕�훽�푆)2}�휉�훼1 ⋅⋅⋅�훼�푘
= 0.

(25)

g�휇�휈�휕�휇�푆�휕�휈�푆 + �푚2 − 2�휎�푚�휔[g �푡�푡(1 + �휔) − �푗g �푡�휑]
− �휎2�휔2[�휔2(g �푡�푡)2 − (g �푡�푡)2 + (�푗g �푡�휑)2] = 0.

Substituting formula (26) into Equation (25), and Equation 
(25) becomes

Multiplying both sides of Equation (27) by Δ �푟Δ �휃�휌2, we get

(26)

g = − 1
�휒4 �휌

4
sin

2�휃,

g00 = − �휒2

Δ �푟Δ �휃�휌2 [Δ �휃(�푟2 + �푎2)2 − Δ �푟�푎2sin2�휃],
g11 = Δ �푟

�휌2 ,

g22 = Δ �휃

�휌2 ,

g33 = −
�휒2(�푎2Δ �휃sin

2�휃 − Δ �푟)
Δ �푟Δ �휃�휌2

sin
2�휃

,

g03 = g30 =
�휒2�푎[Δ �푟 − (�푟2 + �푎2)Δ �휃]

Δ �푟Δ �휃�휌2 .

(27)

− �휒2

Δ �푟Δ �휃�휌2 [Δ �휃(�푟2 + �푎2)2 − Δ �푟�푎2sin2�휃](�휕�푆�휕�푡)
2

+ 2
�휒2�푎[Δ �푟 − (�푟2 + �푎2)Δ �휃]

Δ �푟Δ �휃�휌2
�휕�푆
�휕�푡

�휕�푆
�휕�휑

+ Δ �푟

�휌2 (�휕�푆�휕�푟)
2
+ Δ �휃

�휌2 (�휕�푆
�휕�휃)

2
−
�휒2(�푎2Δ �휃sin

2�휃 − Δ �푟)
Δ �푟Δ �휃�휌2

sin
2�휃

( �휕�푆
�휕�휑)

2

+ �푚2 − 2�푚�휎�휔{− �휒2

Δ �푟Δ �휃�휌2 [Δ �휃(�푟2 + �푎2)2 − Δ �푟�푎2sin2�휃]

⋅(1 + �휔) − �푗
�휒2�푎[Δ �푟 − (�푟2 + �푎2)Δ �휃]

Δ �푟Δ �휃�휌2 }

− �휎2�휔2{(− �휒2

Δ �푟Δ �휃�휌2)
2

[Δ �휃(�푟2 + �푎2)2 − Δ �푟�푎2sin2�휃]2

⋅(�휔2 − 1) + [�푗�휒
2�푎[Δ �푟 − (�푟2 + �푎2)Δ �휃]

Δ �푟Δ �휃�휌2 ]
2}}}

= 0.

(28)

Δ �푟
2Δ �휃(

�휕�푆
�휕�푟)

2
+ Δ �푟Δ �휃

2(�휕�푆
�휕�휃)

2
+ �푚2Δ �푟Δ �휃�휌2

− �휒2{[Δ �휃(�푟2 + �푎2)2 − Δ �푟�푎2sin2�휃]�휔2

−2�푎�푗�휔[Δ �푟 − (�푟2 + �푎2)Δ �휃] +
�푗2(�푎2Δ �휃sin

2�휃−Δ�푟)
sin

2�휃
}}}

+ 2�푚�휎�휔�휒2{[Δ �휃(�푟2 + �푎2)2 − Δ �푟�푎2sin2�휃]
⋅(1 + �휔) + �푗�푎[Δ �푟 − (�푟2 + �푎2)Δ �휃]} − �휎2�휔2 �휒4

Δ �푟Δ �휃�휌2

⋅ {[Δ �휃(�푟2 + �푎2)2 − Δ �푟�푎2sin2�휃]2(�휔2 − 1)
+�푗2�푎2[Δ �푟 − (�푟2 + �푎2)Δ �휃]2} = 0.
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According to the theory of tunneling radiation of the black 
hole, Equation (34) shows that the quantum tunneling radia-
tion rate of the black hole is

where �� is modified Hawking temperature at event horizon, 
expressed as

where �0 is the unmodified Hawking temperature at the event 
horizon of the black hole. If we ignore the terms a�er �, 
�푇�퐻 = �푇0.

It is worth noting that Equation (36) is an accurate cor-
rection based on the Lorenz dispersion relation. �is is a mod-
ification of the specific theoretical basis, and a small 
modification on the quantum scale. Since the result of this 
correction will lead to the correction of black hole entropy, 
which is related to the information of black hole, the physical 
significance of this correction is worth studying deeply.

�e equation satisfying the cosmic horizon �� of the black 
hole is shown in (13). Similarly, by solving the dynamical equa-
tion of the arbitrary spin fermions in the space-time of the 
black hole, we can obtain the fermions tunneling rate at the 
cosmic horizon �� of the black hole. Similarly, we can get the 
Hawking temperature at the cosmic horizon of the black hole, 
which is expressed as

where �
�

0 and �
�

0 can be got by changing �� in �0 and �0 into 
�� respectively. �e difference between getting formula (37) 
and formula (36) is that when we integrate �휕�푆�휕�푟

������푟→�푟�
 using the 

residue theorem, we need to integrate from �� to the inner 
where the researcher locates. In other words, �휕�푆�휕�푟

������푟→�푟�
 and �휕�푆�휕�푟

������푟→�푟�
 

integrate in opposite directions.
Another important physical quantity in black hole ther-

modynamics is black hole entropy, and the modified Hawking 
temperature will lead to the modification of black hole entropy. 
According to the first law of thermodynamics of black holes, 
the entropy �� of black holes can be expressed as

For the Kerr-de Sitter black hole,

therefore, through formula (36), the modified entropy at the 
event horizon of the black hole is expressed as

(35)Γ = exp [−2(�퐼�푚�푆+ − �퐼�푚�푆−)] = exp(−�휔 − �휔0
�푇�퐻

),

(36)

�푇�퐻 = �푟�퐻 − 2�푟3�퐻�푙−2 − �푟�퐻�푎2�푙−2 −�푀
2�휋�휒(�푟2�퐻 + �푎2) [1 − �휎 �퐵0�퐴2

0
]
−(1/2)

= �푇0[1 + 1
2�휎

�퐵0�퐴2
0
+ 3
8�휎2( �퐵0�퐴2

0
)

2

+ ⋅ ⋅ ⋅],

(37)

�푇�푐
�퐻 = �푟�푐 − 2�푟3�푐 �푙−2 − �푟�푐�푎2�푙−2 −�푀

2�휋�휒(�푟2�푐 + �푎2) [
[1 − �휎 �퐵�

0

�퐴�

0
2
]
]

−(1/2)

= �푇�퐶
0
[
[1 +

12�휎 �퐵�

0

�퐴�

0
2 + 3

8�휎
2( �퐵

�

0

�퐴
�

0
2)

2

+ ⋅ ⋅ ⋅]],

(38)�푑�푆� = �푑�푀 − �훺�푑�퐽 − �푈�푑�푄
�푇 .

(39)�푑�푆� = �푑�푀 − �훺�푑�퐽
�푇 ,

Dividing both sides of Equation (28) by Δ �, we get

Near the event horizon of this black hole, Equation (29) 
becomes

that is

therefore,

where,

�e positive and negative signs in Equation (32) correspond 
to the exit wave solution and the incident wave solution 
respectively. In order to find out the fermion action �, we can 
consider the solution �� of equation Δ �(�푟�) = 0 as a singular-
ity, so we can integrate at the event horizon of the black hole 
by applying the residue theorem, and then we can obtain

(29)

Δ �푟
2(�휕�푆�휕�푟)

2
+ Δ �푟Δ �휃(

�휕�푆
�휕�휃)

2
+ �푚2Δ �푟�휌2

− �휒2

Δ �휃
{[Δ �휃(�푟2 + �푎2)2 − Δ �푟�푎2sin2�휃]�휔2

−2�푎�푗�휔[Δ �푟 − (�푟2 + �푎2)Δ �휃) +
�푗2(�푎2Δ �휃sin

2�휃−Δ�푟)
sin

2�휃
}}}

+ 2�푚�휎�휔�휒2

Δ �휃
{(1 + �휔)[Δ �휃(�푟2 + �푎2)2 − Δ �푟�푎2sin2�휃]

+�푗�푎[Δ �푟 − (�푟2 + �푎2)Δ �휃]} + �푂(�휎2) = 0.

(30)

(Δ �푟
�휕�푆
�휕�푟)

2�儨�儨�儨�儨�儨�儨�儨�儨�儨�푟→�푟�
− �휒2[(�푟2�퐻 + �푎2)2�휔2 + 2�푎�푗�휔(�푟2�퐻 + �푎2) + �푗2�푎2]

+ 2�푚�휎�휔�휒2(�푟2�퐻 + �푎2)[(1 + �휔)(�푟2�퐻 + �푎2) − �푗�푎] + �푂(�휎2) = 0,

(31)
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(32)
�휕�푆
�휕�푟

���������푟→�푟�
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,

(33)
�퐴0 = (�푟2�퐻 + �푎2)�휔 + �푗�푎
�퐵0 = 2�푚�휔(�푟2�퐻 + �푎2)[(1 + �휔)(�푟2�퐻 + �푎2) − �푗�푎].

(34)

�푆± = ±�푖�휋[1 − �휎 �퐵0

�퐴2
0
]
1/2 �휔 − �푗�훺0

Δ
�

�푟
�儨�儨�儨�儨�儨�儨�푟→�푟�

(�푟2�퐻 + �푎2)−1 + �푆�耠

�훺0 = −�푎(�푟2�퐻 + �푎2)−1.
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number, so that the terms with O(ℏ) in fold equation is 
ignored. If we consider the effect from O(ℏ), the entropy of 
the black hole will be modified again, and the technology is 
developed in [15, 16]. We will investigate the effect in future 
work.
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