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In this paper, Lie symmetries of time-fractional KdV-Like equation with Riemann-Liouville derivative are performed. With the aid
of infinitesimal symmetries, the vector fields and symmetry reductions of the equation are constructed, respectively; as a result, the
invariant solutions are acquired in one case; we show that the KdV-like equation can be reduced to a fractional ordinary
differential equation (FODE) which is connected with the Erdélyi-Kober functional derivative; for this kind of reduced form,
we use the power series method for extracting the explicit solutions in the form of power series solution. Finally, Ibragimov’s
theorem has been employed to construct the conservation laws.

1. Introduction

In recent times, more attention has been paid to fractional
calculus. The research study of mathematical models includ-
ing time-fractional order has been a significant title of many
works in science and engineering areas. In fact, a physical
process can rely not only on the instantaneous time but also
on the history of time, which can be described via fractional
calculus that renders the models described by fractional
order most useful and practical than models represented
by classical integer order. Fractional partial differential equa-
tions (FPDEs) have been progressively discussed by various
researchers in different fields, such as viscoelasticity, vibration,
biology, and fluid mechanics [1–6]. For the fractional deriva-
tive, there exists no unique notion to define its concept. There
are several definitions of the fractional derivative, such as the
Riemann-Liouville, the modified Riemann-Liouville, the
Caputo, the Weyl, the Grunwald-Letnikov, and other deriva-
tives that have been adopted by different researchers; for more
details, see [2]. Recently, due to the various applications of
FPDEs, resolving such equations and trying to find some ana-
lytic solutions become among the challenging problems, espe-
cially for nonlinear problems. Not long ago, many authors find
solutions of FDEs, using several approaches including the

sine-cosine method, homotopy perturbation method, first
integral, Adomian decomposition method, and exp-function
method; see [7–13]. In the end of the 19th century, Sophus
Lie (1842-1899) introduced a new analytic method, called
Lie group analysis, which is regarded as a powerful tool in
the study of differential equation (DE) properties. After that,
this approach has been developed by Ovsiannikov [14]. In
general, Lie symmetry can be used for construction of the sim-
ilarity solution, reducing order of equation, reducing the num-
ber of variables, acquiring the new solutions from the old one,
and to provide linearisation of nonlinear PDEs. Furthermore,
we use Lie symmetries to formulate the conservation laws
(CLs) and many other applications; for more details, see
[15–20].

One of the earliest studies was done by Gazizov et al.
[21], by extending the Lie symmetry approach for FPDEs,
and proposed prolongation formulae for fractional deriva-
tives. Later, many researchers apply this approach for such
type of time-fractional equation, particularly Riemann-
Liouville derivative; see [22–28]. The popular work of
Noether, known as Noether theorem [29], describes the link-
age with symmetry of the Euler-Lagrange equation and con-
servation laws. Ibragimov [30] and Lukashchuk [31] have
been successfully arrived to propose fractional generalization
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of Noether theorem and given the method to determine CLs
of FDEs even if those equations are without fractional
Lagrangian.

In this work, we use Lie symmetry analysis for nonlinear
time-fractional KdV-like equation given by the following
form:

∂αu
∂tα

+ 3
2
u3x
u2

− λuxxx = 0, ð1Þ

where ∂αt u is the Riemman-Louivill (R-L) fractional
derivative of order α with respect to t. If we put α = 1, the
fractional KdV-like equation becomes the classical nonlinear
KdV-like equation, which was considered for extracting the
solutions by using symmetry analysis (see [32]). The KdV-
like equation is derived from the standard Korteweg-de
Vries (KdV) differential equation

∂u
∂t

+ 6uux + uxxx = 0, ð2Þ

which can be used to model a variety of different physical
phenomena such as hydromagnetic collision-free waves,
ion-acoustic waves, acoustic solitons in plasmas, lattice
dynamics, stratified waves interior, and internal gravity
waves (see, e.g., [33–36]). In [37], an inquiry was undertaken
to increase the reliability and precision of a genetic
programming-based method to deduce model equations
from a proven analytical solution, especially by using the sol-
itary wave solution; the program, instead of giving (2), sur-
prisingly gave the fractional KdV-like equation. By using

the KdV-like equations, we can find other properties of the
classical equation (see [25, 32, 38–42]).

The paper is arranged as follows. In Section 2, we give
some definitions and properties of fractional calculus. In
Section 3, we present the Lie symmetry analysis for FPDEs.
In Section 4, we compute the Lie point symmetries of frac-
tional KdV-like equation, symmetry reductions, and some
invariant solutions of Equation (1). In Section 5, we use
the power series method for obtaining the explicit power
series solutions. In Section 6, by using Ibragimov’s theorem,
the conservation laws of Equation (1) are obtained. Finally,
we give some conclusions in Section 7.

2. Preliminaries of Fractional Calculus

The aim of this section is to provide some basic definitions
and principle properties of fractional calculus that will be
used during this study.

Definition 1 (see [2]). The Riemann-Liouville fractional inte-
gral of a real-valued function f ðx, tÞ, of order α > 0, with
respect to variable t, is presented by

0I
α
t fð Þ x, tð Þ = 1

Γ αð Þ
ðt
0
t − sð Þα−1 f x, sð Þds, t > 0, ð3Þ

where ΓðαÞ = Ð∞0 xα−1e−xdx is the Euler gamma function.

Definition 2 (see [2]). The Riemann-Liouville fractional
derivative of a real-valued function f ðx, tÞ, of order α > 0,
with respect to variable t, is given by

where n ∈ℕ∗:

Definition 3 (see [2]). The Leibnitz formula of two functions
is given by the following expression:

Dα
t f x, tð Þg x, tð Þð Þ = 〠

∞

n=0

α

n

 !
Dα−n
t f x, tð ÞDn

t g x, tð Þ, ð5Þ

where

α

n

 !
= −1ð Þn−1αΓ n − αð Þ

Γ 1 − αð ÞΓ n + 1ð Þ : ð6Þ

Definition 4 (see [2]). The Erdélyi-Kober fractional differen-
tial operator of order α is defined by

Pδ,α
λ g

� �
ζð Þ =

Ym−1

i=0
δ + i −

1
β
ζ
d
dζ

� �
Kδ+α,m−α

λ g
� �

ζð Þ,

m =
α½ � + 1, α ∉ℕ,
α, α ∈ℕ,

( ð7Þ

where

Kδ,α
λ g

� �
ζð Þ = 1

Γ αð Þ
ð∞
1

z − 1ð Þα−1z− δ+αð Þg ζz1/λ
� �

dz: ð8Þ

0D
α
t fð Þ x, tð Þ =

∂n

∂tn
f x, tð Þ, if α = n,

1
Γ n − αð Þ

∂n

∂tn

ðt
0
t − sð Þn−α−1 f x, sð Þds, 0 ≤ n − 1 < α < n,

8>>><
>>>:

ð4Þ
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Lemma 5. If we have

t
∂
∂t

g ςð Þ = ας
d
dς

g ςð Þ,with ς = xtα, ð9Þ

then

∂n

∂tn
tχ Kδ,n−α

λ g
� �

ςð Þ
h i

= tχ−n
Yn−1
j=0

χ − n + 1 + j + ας
d
dς

� �
Kχ−n+α+1,n−α

λ g
� �

ςð Þ,

= tχ−n Pχ−n+1,α
λ

� �
ςð Þ:

ð10Þ

3. Principle Idea of Lie Symmetry Analysis for
Time FPDEs

The main purpose of this section is to describe the funda-
mental concept of Lie symmetry approach applied for time
FPDEs.

At first, let us consider the time FPDEs

∂αu x, tð Þ
∂tα

= F x, t, u, ux, uxx, uxxxð Þ, ð11Þ

where ∂αt u is R-L fractional derivative operator and sub-
scripts indicate the partial derivatives.

Now, let us assume that Equation (11) is still invariant
under the one parameter group of transformations pre-
sented by

t̂ = t + ετ x, t, uð Þ +O εð Þ,
x̂ = x + εξ x, t, uð Þ +O εð Þ,
û = u + εη x, t, uð Þ +O εð Þ,
ûαt̂ = uαt + εηαt x, t, uð Þ +O εð Þ,
ûx̂ = ux + εη 1ð Þ

x x, t, uð Þ +O εð Þ,
ûx̂x̂ = uxx + εη 2ð Þ

xx x, t, uð Þ +O εð Þ,
ûx̂x̂x̂ = uxxx + εη 3ð Þ

xxx x, t, uð Þ +O εð Þ,

ð12Þ

with ε being a group parameter, τ, ξ, and η present the
infinitesimal functions, and ηð1Þx , ηð2Þxx , η

ð3Þ
xxx , and ηαt are the

extended infinitesimals, which are presented as follows:

η 1ð Þ
x =Dx ηð Þ − uxDx ξð Þ − utDx τð Þ,
η 2ð Þ
xx =Dx η 1ð Þ

x

� �
− uxxDx ξð Þ − uxtDt τð Þ,

η 3ð Þ
xxx =Dx η 2ð Þ

xx

� �
− uxxxDx ξð Þ − uxxtDx τð Þ,

ð13Þ

where Dx is the total derivative operator with respect to x,
introduced by

Dx =
∂
∂x

+ ux
∂
∂u

+ uxx
∂
∂ux

+ utx
∂
∂ut

+⋯, ð14Þ

and α-th order extended infinitesimal ηα,t is described by the
following formula:

ηαt =Dα
t ηð Þ + ξDα

t uxð Þ −Dα
t ξuxð Þ

+Dα
t Dt τð Þuð Þ −Dα−1

t τuð Þ + τDα+1
t uð Þ

= ∂αt ηð Þ + ηu − αDt τð Þð Þ∂αt u − u∂αt ηuð Þ + μ

+ 〠
∞

n=1

α

n

 !
∂nt ηu −

α

n + 1

 !
Dn+1
t τð Þ

" #
Dα−n
t u

− 〠
∞

n=1

α

n

 !
Dn
t ξð Þ∂α−nt uxð Þ:

ð15Þ

Here, Dα
t refers to the total time-fractional derivative and μ

is given by

μ = 〠
∞

n=2
〠
n

m=2
〠
m

k=2
〠
k−1

r=0

α

n

 !
n

m

 !
r

k

 !
1
k!

tn−α

Γ n + 1 − αð Þ

× −u½ �r d
m

dtm
uk−r
h i ∂n−m+kηu

∂tn−m∂uk
:

ð16Þ

The corresponding Lie algebra of symmetries (12) is
spanned by the vector fields of the following form:

X = τ x, t, uð Þ ∂∂t + ξ x, t, uð Þ ∂
∂x

+ η x, t, uð Þ ∂
∂u

: ð17Þ

Theorem 6 (invariance criterion). Equation (11) accepts X as
an infinitesimal generator, if the Lie symmetry condition is
satisfied, which can be presented as follows:

Xα,3 ∂αt u − Fð Þj ∂αt u−Fð Þ = 0, ð18Þ

where the prolonged Xα,3 operator of X takes the following
form:

Xα,3 = X + ηαt
∂
∂αt

+ η 1ð Þ
x

∂
∂ux

+ η 2ð Þ
xx

∂
∂uxx

+ η 3ð Þ
xxx

∂
∂uxxx

: ð19Þ

Remark 7 (invariance condition). The transformation (12)
must keep the lower limit of Equation (4) invariant; see
[21]. So this condition is expressed as

τ x, t, uð Þjt=0 = 0: ð20Þ

Remark 8. We have to mention that the expression μ van-
ishes when the infinitesimal ηðx, t, uÞ is linear in the variable
u that means
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η x, t, uð Þ = u x, tð Þg x, tð Þ + h x, tð Þ: ð21Þ

Consequently, research was confined to the case when μ = 0:

Definition 9. We can say that a solution u = f ðx, tÞ is an
invariant solution of Equation (11) if we have the following
conditions:

(i) u = f ðx, tÞ is an invariant surface of (12) that means

Xf = 0⇒ τ x, t; ;uð Þ ∂∂t + ξ x, t, uð Þ ∂
∂x

+ η x, t, uð Þ ∂
∂u

� �
f = 0:

ð22Þ

(ii) u = f ðx, tÞ satisfies Equation (11)

So, we combine both conditions (i) and (ii); we find that
a solution is invariant solution, if it satisfies the following
characteristic function:

τut + ξux = η, ð23Þ

which is equivalent to resolve the following equation:

dt
τ

= dx
ξ

= du
η
: ð24Þ

4. Lie Symmetries and Invariant Solutions for
KdV-Like Equation

By using the results described in Section 2, we can determine
the Lie symmetries, symmetry reductions, and invariant
solutions of Equation (1).

4.1. Symmetries of KdV-Like Equation. Assuming that Equa-
tion (1) is an invariant under (12), we apply the third pro-
longation Xα,3 to (1); we find the infinitesimal criterion
(18) to be

ηαt −
3u3x
u3

η + 9
2
u2x
u2

η 1ð Þ
x − λη 3ð Þ

xxx = 0: ð25Þ

Substituting the explicit expressions η, ηð1Þx , ηð3Þxxx and ηαt into
(25) and equating powers of derivatives up to zero, we get
the determining of equations; solving this obtained deter-
mining system with the initial condition (20) shows that

τ x, t, uð Þ = 3C1t, ξ x, t, uð Þ = αC1x + C2, η x, t, uð Þ = C3u,
ð26Þ

with C1, C2, and C3 as arbitrary constants. Now, we can
achieve the 3-dimensional Lie algebra generated by the vec-
tor fields under the following formulas:

X1 =
∂
∂x

, X2 = 3t ∂
∂t

+ αx
∂
∂x

, X3 = u
∂
∂u

: ð27Þ

Consequently, we get three Lie group of point transforma-
tions associated to Equation (1)

G1 : x, t, uð Þ⟶ x + ε, t, uð Þ,
G2 : x, t, uð Þ⟶ eαεx, e3εt, u

À Á
,

G3 : x, t, uð Þ⟶ x, t, eεuð Þ:
ð28Þ

Namely, if f ðx, tÞ is a solution of (1), then giði = 1, 2, 3Þ
are also solutions of Equation (1)

g1 = f x + ε, tð Þ,
g2 = f eαεx, e3εt

À Á
,

g3 = eε f x, tð Þ:
ð29Þ

4.2. The Similarity Reductions and Invariant Solutions of
KdV-Like Equation. In this section, we perform the similar-
ity reductions and reduced form of Equation (1), in order to
obtain invariant solutions of KdV-like equation, from the
corresponding vector field.

Case 1. Reduction with X1 = ∂/∂x, by integrating the charac-
teristic equation

dt
0 = dx

1 = du
0 , ð30Þ

we have the similarity variable z = t and similarity func-
tion f ðzÞ = u. Thus, we have

u1 = f tð Þ: ð31Þ

By replacing (31) into (1), Equation (1) is reduced to a
FODE that has the following form:

Dα
t f tð Þ = 0: ð32Þ

Consequently, the group-invariant solutions are expressed as
the following form:

u1 = k1t
α−1, ð33Þ

where k1 is an arbitrary constant.

Figure 1 presents the graph of solution u1ðx, tÞ for some
different values of α.

Case 2. Reduction with X1,3 = aX1 + bX3.
The similarity variable z and similarity function f ðzÞ of

the generator X1,3 are achieved by resolving the correspond-
ing characteristic equation written as

dt
0 = dx

a
= du
bu

: ð34Þ
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So, we find

z = t, f zð Þ = e−b/axu: ð35Þ

Then, the corresponding invariant solution of Equation (1)
has the form u2 = eðb/aÞx f ðtÞ; after substituting this function
into Equation (1), we get the reduced equation in the form

Dα
t f tð Þ + 3

2 − λ

� �
b
a

� �3
f tð Þ = 0: ð36Þ

Then,

f tð Þ = K2t
α−1Eα,α λ −

3
2

� �
b
a

� �3
tα

" #
, ð37Þ

where Eα,β is the two-parametric Mittag-Leffer function
given by

Eα,β z½ � = 〠
∞

k=0

zk

Γ αk + βð Þ , ð38Þ

and K2 is an arbitrary constant.
As a result, the explicit solution of Equation (1) has the

following form:

u2 x, tð Þ = K2e
b/axtα−1Eα,α λ −

3
2

� �
b
a

� �3
tα

" #
: ð39Þ

Figure 2 presents the graph of solution u2ðx, tÞ for some
different values of α.

Case 3. Reduction with X3, for this generator, we obtain a
trivial solution.

Case 4. Reduction with X2.
The similarity variable z and similarity transformation

f ðzÞ accordding to X2 are deduced from integrating the
characteristic equation

dt
3t =

dx
αx

: ð40Þ

We obtain

z = xt−α/3, f zð Þ = u: ð41Þ

Thus, the group-invariant solution has the form

u = f zð Þ, z = xt−α/3: ð42Þ

Theorem 10. If we consider the transformations (42), the
fractional KdV-like equation is reduced to a nonlinear FODE
of the form

f 2 P1−α,α
3/α f

À Á
zð Þ + 3

2
f 3z − λf 2 f zzz = 0: ð43Þ

Proof. By using the Riemann-Liouville fractional derivative
definition for the similarity transformation

u = f xt−α/3
À Á

, ð44Þ

we have

∂αu
∂tα

= ∂n

∂tn
1

Γ n − αð Þ
ðt
0
t − sð Þn−α−1 f xs−α/3

À Á
ds

� �
: ð45Þ

Let v = t/s, we have ds = ð−t/v2Þdv, so the above expres-
sion can be expressed as

∂αu
∂tα

= ∂n

∂tn
tn−α

1
Γ n − αð Þ

ð∞
1

v − 1ð Þn−α−1v− n−α+1ð Þ f zvα/3
À Á

dv
� �

,

ð46Þ

∂αu
∂tα

= ∂n

∂tn
tn−α K1,n−α

3/α f
À Á

zð ÞÂ Ã
: ð47Þ

On the other hand, we have

t
∂
∂t

f zð Þ = −tx
α

3 t
−α/3−1 f ′ zð Þ = −

α

3 zf
′ zð Þ: ð48Þ

If z = xt−α/3, by using (10) in Lemma 5 for (46), we have

∂n

∂tn
tn−α K1,n−α

3/α f
À Á

zð ÞÂ Ã
= t−α P1−α,α

3/α f
À Á

zð Þ: ð49Þ

14

12

10

8

6

4

2

0 0.2 0.4 0.6 0.8 1

t

Figure 1: The solution u1ðx, tÞ for Equation (1) for k1 = 1.
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Continuing further by calculating ux, uxx, and uxxx and
substituting into Equation (1), the fractional KdV-like equa-
tion is reduced to following form:

f 2 P1−α,α
3/α f

À Á
zð Þ + 3

2 f
3
z − λf 2 f zzz = 0: ð50Þ

So the proof becomes complete.

5. The Power Series Solution of the Reduced
Form of Fractional KdV-Like Equation

In this section, we employ the power series method, to
explore the analytic solution of Equation (50); once we
obtain the explicit solution of the reduced form, we can eas-
ily extract the power series solution of Equation (1).

We start by putting

f zð Þ = 〠
∞

n=0
anz

n, ð51Þ

which leads to

f z = 〠
∞

n=0
nanz

n−1 = 〠
∞

n=0
n + 1ð Þan+1zn, ð52Þ

f zzz = 〠
∞

n=0
n n − 1ð Þ n − 2ð Þanzn−3

= 〠
∞

n=0
n + 1ð Þ n + 2ð Þ n + 3ð Þan+3zn:

ð53Þ

Substituting (51), (52), and (53) into (50), we get the fol-
lowing formula:

〠
∞

n=0
anz

n

 !2

〠
∞

n=0

Γ 2 − 2α + nα/3ð Þð Þ
Γ 2 − α + nα/3ð Þð Þ anz

n

+ 3
2 〠

∞

n=0
n + 1ð Þan+1zn

 !3

− λ 〠
∞

n=0
anz

n

 !2

Á 〠
∞

n=0
n + 3ð Þ n + 2ð Þ n + 1ð Þan+3zn

 !
= 0:

ð54Þ

When n = 0, we get

a3 =
1
6λ

Γ 2 − 2αð Þ
Γ 2 − αð Þ a0 +

3
2
a31
a20

� �
: ð55Þ

Generally, for n ≥ 1, we obtain

an+3 =
1

n + 1ð Þ n + 2ð Þ n + 3ð Þλa20

Á
"
〠
n

k=0
〠
k

j=0
ajak−jan−k

Γ 2 − 2α + n − kð Þα/3ð Þð Þ
Γ 2 − α + n − kð Þα/3ð Þð Þ

+ 3
2〠

n

j=0
〠
j

k=0
j + 1ð Þ k − j + 1ð Þ

Á n − j + 1ð Þak+1aj−k+1an−j+1
#
:

ð56Þ

By using (56), all the coefficients an, n ≥ 3 of power series
solution are obtained by a systematic calculation and by
choosing the suitable arbitrary constants a1, a2, and a3
(a0 ≠ 0).

Hence, the power series solution of Equation (50) is
expressed as follows:

f zð Þ = a0 + a1z + a2z
2 + a3z

3 + 〠
∞

n=1
an+3z

n+3

= a0 + a1z + a2z
2 + 1

6λ
Γ 2 − 2αð Þ
Γ 2 − αð Þ a0 +

3
2
a31
a20

� �
z3

+ 〠
∞

n=1

1
n + 1ð Þ n + 2ð Þ n + 3ð Þλa20

Á
"
〠
n

k=0
〠
k

j=0
ajak−jan−k

Γ 2 − 2α + n − kð Þα/3ð Þð Þ
Γ 2 − α + n − kð Þα/3ð Þð Þ

+ 3
2〠

n

i=0
〠
i

j=0
j + 1ð Þ k − j + 1ð Þ

Á n − k + 1ð Þaj+1ak−j+1an−k+1
#
zn+3:

ð57Þ

Finally, the exact power series solution for Equation (1)
is represented as

u3 x, tð Þ = a0 + a1xt
−α/3 + a2x

2t−2α/3

+ 1
6λ

Γ 2 − 2αð Þ
Γ 2 − αð Þ a0 +

3
2
a31
a20

� �
x3t−α

+ 〠
∞

n=1

1
n + 1ð Þ n + 2ð Þ n + 3ð Þλa20

Á
"
〠
n

k=0
〠
k

j=0
ajak−jan−k

Γ 2 − 2α + n − kð Þα/3ð Þð Þ
Γ 2 − α + n − kð Þα/3ð Þð Þ

+ 3
2〠

n

i=0
〠
i

j=0
j + 1ð Þ k − j + 1ð Þ

Á n − k + 1ð Þaj+1aj−k+1an−k+1
#
xn+3t−nα/3:

ð58Þ
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The graph of the power series solution is presented by
Figures 3 and 4 for different values of α.

Case 1. For α = 0:25.

Case 2. For α = 075.

6. Conservation Laws of Fractional KdV-
Like Equation

By using Ibragimov’s method [30], we can obtain the conser-
vation laws for time-fractional KdV-like equation.

First, we start by giving some definitions and results
describing this method. Now, let us define the formal
Lagrangian of fractional KdV-like equation

L = v uαt +
3
2
u2x
u2

ux − λuxxx

� �
, ð59Þ

with vðx, tÞ as a new dependent variable.

A vector C = ðCt , CxÞ that satisfies the following equa-
tion

Dt Ctð Þ +Dx Cxð Þ = 0, ð60Þ

when uðx, tÞ is a solution of (1), is named a conserved vector
for time-fractional KdV-like equation, and Equation (60) is
called the conservation equation.

The adjoint equation of KdV-like equation is expressed
by the following formula:

δL

δu
= 0, ð61Þ

where δ/δu is the Euler-Lagrange operator which is pre-
sented as

δ

δu
= ∂
∂u

+ Dα
tð Þ∗ ∂

∂ Dα
t uð Þ −Dx

∂
∂ uxð Þ

+D2
x

∂
∂ uxxð Þ −D3

x
∂

∂ uxxxð Þ+⋯,
ð62Þ
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2
1

0

0.4
x

0.4

0

t

(a) α = 1/4

x t

8
7
6
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4
3
2
1

0

0.4 0.4

0

(b) α = 1/2

7
6
5
4
3
2
1
0

0.4
x

0

0.2
t

(c) α = 3/4

x t

3.5
3

2.5
2

1
1.5

0

0.4 0.4

0

(d) α = 9/10

Figure 2: The solution u2ðx, tÞ of Equation (1) for K2 = a = b = λ = 1 and for α = 0:25,0:5,0, 75,0:9.
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where ðDα
t Þ∗ is the adjoint operator of Dα

t

Dα
tð Þ∗ = −1ð ÞnPn−α

t Dn
tð Þ= cD

α
t , ð63Þ

and ðDα
t Þ∗ is the right-side Caputo operator, and

Pm−α
t h x, tð Þ = 1

Γ m − αð Þ
ðs
t

h x, sð Þ
s − tð Þ1+α−m ds: ð64Þ

The construction of CLs for FDEs is in the same way of
PDEs, so we get

PrXα
t +Dt τð ÞL +Dx ξð ÞL =Wi

δL

δu
+Dt Ctð Þ +Dx Cxð Þ, ð65Þ

where Wi are the characteristic function given by

Wi = ηi − τiut − ξiux: ð66Þ
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Figure 4: The solution u3ðx, tÞ of Equation (1) for a0 = 2, a1 = 5, a2 = 1.
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Figure 3: The solution u3ðx, tÞ of Equation (1) for a0 = 2, a1 = 5, a2 = 1.
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On the other hand, for R-L time-fractional derivative, Ct
is determined by

Ct = 〠
m−1

j=0
−1ð ÞkDα−1−k Wið ÞDk

t
∂

∂Dα
t u

− −1ð ÞmI Wi,Dm
t

∂
∂ Dα

tð Þ
� �

,
ð67Þ

where I is defined by

I f , hð Þ = 1
Γ m − αð Þ

ðt
0

ðT
t

f τ, xð Þh ϕ, xð Þ
ϕ − τð Þα+1−m dϕdτ: ð68Þ

So the components Cx and Ct are expressed by

Ct =Dα−1
t Wið Þ ∂L

∂ Dα
t uð Þ + I Wi,Dt

∂L
∂ Dα

t uð Þ
� �� �

,

Cx =Wi
∂L
∂ux

−Dx
∂L
∂uxx

� �
+Dxx

∂L
∂uxxx

� �� �

+Dx Wið Þ ∂L
∂uxx

−Dx
∂L
∂uxxx

� �� �
+Dxx Wið Þ ∂L

∂uxxx
:

ð69Þ

By using the definition given above, we can compute the
conservation laws of Equation (1).

As we have already seen previously, the time-fractional
KdV-like equation admits three infinitesimal generators
defined in Section 4:

X1 =
∂
∂x

, X2 = 3t ∂
∂t

+ αx
∂
∂x

, X3 = u
∂
∂u

: ð70Þ

The characteristic functions corresponding to each gen-
erator are given by the following formulas:

W1 = −ux,W2 = −3tut − αxux,W3 = u: ð71Þ

Substituting Wiði = 1, 2, 3Þ into the vector components
(69), we obtain the conserved vectors of Equation (1)

C1
t = vDα−1

t −uxð Þ + I −ux, vtð Þ,

C1
x = −ux

9
2
u2x
u2

v +Dxx −λvð Þ
� �

+Dx −uxð Þ Dx λvð Þ½ � +Dxx −uxð Þ −λv½ �

= λvxxux −
9
2
u3x
u2

v − λvxuxx + λvuxxx,

C2
t = vDα−1

t −3tut − αxuxð Þ + I −3tut − αxux, vtð Þ,

C2
x = −3tut − αxuxð Þ 9

2
u2x
u2

v +Dxx −λvð Þ
� �

+Dx −3tut − αxuxð Þ Dx λvð Þ½ �
+Dxx −3tut − αxuxð Þ −λv½ �

= −3tut − αxuxð Þ 9
2
u2x
u2

v − λvxxÞ
� �

− αux + αxuxx + 3tuxtð Þ λvx½ �
+ 2αuxx + αxuxxx + 3tuxxtð Þ λv½ �,

C3
t = vDα−1

t uð Þ + I u, vtð Þ,

C3
x = u

9
2
u2x
u2

v +Dxx −λvð Þ
� �

+Dx uð Þ Dx λvð Þ½ �

+Dxx uð Þ −λv½ � = −λvxxu + λvxux

+ 9
2
u2x
u
v − λvuxx:

ð72Þ

7. Conclusion

In this work, we used symmetry analysis to study the time-
fractional KdV-like equation. It has been shown that the
KdV-like equation accepted three Lie point symmetries,
which enable us to achieve symmetry reductions and con-
struct new group invariant solutions of this equation; also,
the equation is reduced to a nonlinear FODE where the frac-
tional derivatives are in Erdélyi-Kober sense. Via power
series method, another kind of solutions is obtained in the
form of power series solutions. Finally, conservation laws
were obtained for the KdV-like equation by applying Ibragi-
mov’s theorem.
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