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In this paper, we study the stationary compressible nonisothermal nematic liquid crystal flows affected by the external force of
general form in three-dimensional space. By using the contraction mapping principle, we prove the existence and uniqueness
of strong solution around the constant state in some suitable function space.

1. Introduction and Main Result

We consider the problem of identifying the stationary
motion of compressible nonisothermal nematic liquid crys-
tal flows effected by the external force of general form:

div (pu) = H,
p(u-Vu—pAu— (u+A)Vdiv u+VP=-Vd - Ad + pF,
p(u-V)0+P div u—xA9="¥(u) + |Ad + |Vd[d|* + G,
(u-V)d-Ad=|vd|’d +R.

(1)

Here, the unknown functions p = p(x) > 0, u = u(x) € R?,
0=0(x) >0,and d = d(x) € S* are the density, velocity, abso-
lute temperature, and macroscopic average of the nematic
liquid crystal orientation field, respectively. The pressure P
= P(p,0) >0 is a smooth function of p, 8 satisfying P,(p, 0)
>0, Py(p,0) > 0. The constants y, A are the shear and bulk
viscosity coefficients of the fluids, respectively, which are
assumed to satisfy the physical restrictions ¢ >0 and 2y + 3
A >0. The constant « > 0 is the ratio of the heat conductivity
coefficient over the heat capacity. Moreover, ¥ = ¥ (u) is the
dissipation function:

¥ () = & vu+ (W)T’z + A(div ), 2)

In addition, H(x), F(x)=(F,(x), Fy(x), F5(x)), R(x)
=(R,(x), Ry(x),Ry(x)), and G(x) are the given mass
source, external force, director source, and energy source,
respectively, which are given by the following form

(H, F,G,R) =div (H,, F,, G\, R)) + (H,, F,, G,, R,), (3)

where A H, = <H11 (x>)1;ig3’H2 =H,(x),F, = (F11]<x))lgi,js3’
Fy= (F3(x))14i<3:G1 = (G1 (%)) 143G = Gy (x), and R =

(Rllj (x)>lgi,jg3’ R,= (Rlz (x))lgig?)'
As the space variable tends to infinity, we assume

(p,u,0,d)(x) — (f), 0,6, c_i) as |x| — +00, (4)

where p > 0 and 6 > 0 are two given constants, and d is a unit
constant vector.

The flow of nematic liquid crystals can be regarded as
slow moving particles, in which the fluid velocity and the
particles arrangement influence each other. The continuum
theory of the nematic liquid crystals was first proposed by
Ericksen [1] and Leslie [2] during the period between 1958
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and 1968, see also the book by De Gennes [3]. The hydrody-
namic flow of nematic liquid crystal system has attracted
great interest and generated many important developments.
Here, we only mention some of related to our study.
When the temperature is absent, ie, 0=0. In [4, 5],
Huang et al. addressed some issues on the strong solutions
in three-dimensional space. Specifically, in [4], the authors
established a blow-up criterion, while the local existence of
a unique strong solution if the initial data are sufficiently
regular and satisfy a natural compatibility condition are
studied in [5]. Later, Jiang et al. [6] considered the global
existence of weak solutions with large initial energy and
without any smallness condition on the initial density
and velocity in a bounded domain of the multidimensional
space. By using the domain expansion technique and the
rigidity theorem, these authors [7] also proved the global
existence of large weak solutions in two dimensions, pro-
vided that the second component of initial data of the
direction field satisfies some geometric angle condition.
One may also see [8] for some recent progress on the exis-
tence, regularity, uniqueness, and large time asymptotic of
the nematic liquid crystal flows.

Recently, Feireis et al. and Feireisl et al. [9, 10] established
nonisothermal models of incompressible nematic liquid crys-
tals and obtained the global existence of weak solutions. For
further study about the well-posedness of solutions to the
incompressible nematic liquid crystal flows, we refer to
[11-15] and references therein. For the compressible noni-
sothermal nematic liquid crystal flows, Guo et al. [16] shown
the existence of global weak solutions by a three-level approx-
imation and weak convergence when the adiabatic exponent
y > 3/2. Moreover, they [17] also considered the global exis-
tence and decay rates of small smooth solutions in the whole
space R®. Later, Fan et al. [18] proved the local well-

div u + &(u~V)Q:—&(u‘V)9+ E,
P P P

~Aw=—(u-V)w+|Vw|* (w+d) +R.

As a preparation for stating our main result, we intro-
duce some notations and conventions to be used throughout
this paper. Here, C denotes a generic positive constant which
may vary depending on the estimate. V'f with any integer
> 0 stands for all derivatives up to I-th order of the function
f with respect to the spatial variable x. L’(R?),1<p<o0
stands for the usual L? spaces with norm ||-||;, and for any
integer m >0, H™(R?) stands for the usual L* —Sobolev
spaces with norm ||-|| ;n. Let

—KA9=—<P+ %(Q+P>)(u-V)9— %(Q+P)(u-V)Q+‘I’(u)+ ]Aw+|Vw\2(w+El)|2+ (Q+P)E +G,
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posedness of strong solutions to the initial boundary value
problem in 3D. By some delicate energy estimates and the crit-
ical Sobolev inequalities of logarithmic type, Zhong [19]
obtained the singularity formation of strong solutions to the
initial boundary problem in 2D. Then, Liu and Zhong [20]
established the global existence and uniqueness of strong solu-
tions with vacuum as far field density in three-dimensional
space. However, a lot of physical and mathematical important
problems are still open due to the lack of a smoothing mecha-
nism and the strong nonlinearity. Up to now, there are no
result available on the existence of stationary solutions to the
three-dimensional compressible nonisothermal nematic liquid
crystal flows with external force.

Inspired by the work of [21, 22] for the compressible
Navier-Stokes equations, the aim of this paper is to study
the existence and uniqueness of stationary solution, which

is a small strong solution around the constant state (p, 0, 6,
(_1) to problem (1)-(4). It is worth mentioning here that the
nonisothermal nematic liquid crystal flow system (1) adds
the strong nonlinear terms, which seems more complicated
than that of the Navier-Stokes equations, and we should
carefully deal with the direction field of liquid crystals in
the angular momentum equation. Moreover, we think that
discussing the stationary solutions to (1) is of significance
to some extent.

As in [21], we choose (P,u,0,d) as the independent
variables and regard p as a smooth function of (P, 0). To this

end, set P=P(p,0) and denote
Q=P-P,9=0-0,w=d-d. (5)

Then, (1) can be reformulated as

—uAu — (u+ A)Vdiv u+Vo = —p(u - V)u-Vw - Aw + pF,

(6)

P

H"(R*) ={ueL (R*): Vue H"'(R*)}.  (7)

Finally, we define some function spaces. For any ¢ > 0,
denote

ME={Q: lallye seh VE={vilvlwse),  (8)



Advances in Mathematical Physics

with

k
Q1] = llellge + |1+ %)) o + 20 (1 + X))Vl 25
v=1

1

k
[Vlly = Vls + 20 N+ ) 9] oo+ 3 (|14 [x)7 9o
v=0 v=1

Moreover, we put

&€

Xhoholsls = {(Q, u,dw):QeMLueV 9eVhweVh, (o u 9, W) tiptsiy < },

Xl {(Q, u, 9, w) € Xk + div u=div U, + U,for some U,, U, such that|| (1 + |x[)* U, || o, + || (1 + [x)) "' U, ||, < s},

§={a:@=diva, + @, forsome @, @, and satisfies || @|| ;<c0}, (10)

where

1@ 16 95 w) [ xnainis = [lQllgn + [lullve + [[9llvs + [l

3
1@l g= D [|(1+[x)"' V@] 2 + [|(1+ |x]) @
= (11)

[ |5 2@y [ oo + (D]

Now, we state our main result about the existence and
uniqueness of stationary solutions (P, u, 8, d) to the station-
ary problem (1).

Theorem 1. There exist small constants e,>0 and c,>0
depending only on p,0, d, such that if

[(H, F, G, R)|| s + ||(1+|x])*V*H|| . + | (1 + [x)'H]| ,, < o,

(12)

or some positive constant € < €,, then the problem (6) admits
p 0 p

. <4555
a solution (Q,u, 9, w) e X,” .

Moreover, the solution is unique in the following sense:
if there is another solution (Q', u', 9", w') satisfying (6) with
the same (H, F,G,R), and ||(@', u', 9", w")||gssss <&, then
(@' u', 9" w') = (o, u, 9, w).

The rest of this paper is organized as follows. In Section
2, we establish the weighted L* theory for the correspond-
ing linearized problem of (6). The proof for the existence
and uniqueness of the stationary solutions to (6) will be
considered in Section 3.

2. Weighted L Theory for Linearized Problem

In this section, we study the weighted L* theory for the
following linearized system of (6):

divu+(a-V)g=h,
—puAu — (u+ A)Vdiv u+Vo = f,
-kA9=g,
-Aw=r.

Here, a=(a'(x),a*(x),a*(x)) and (h,f,g,r) € H"x

H*! x H*1 x H*! are given as
f==(by-V)g +f.9= —(by-V)ey + g, r=—(b;- V)3 +7.
(14)

Moreover, we fix k=3 or k=4 and always assume that

4
ae H4, ; H(l + |x‘)v—lv"aHLz + ”(1 + |x|)uHL°° (15)

k+1
<1, by, ¢, by, 65, 05,65 € VI,

k
(L + x)hl2 + 3 111+ |x]) V7R
k-1 - el (16)
+ ZO H(1 T |x|) v (f, 3 ?) HL < 0.
We would like to point out that equations (13),-(13)5,

which are independent of w, have been well studied in
[21], while (13), is easy to be handled. Hence, by using the



same arguments as in [21], that is by using the Banach
closed range theorem and some weighted-L* estimates on
the linearized problem (13), we get the following result.

Theorem 2. There exists a positive constants 1, > 0 depend-

ing only on u, A and « such that if y in (15) satisfies n <,
then the problem (13) has a solution (Q, u, 9, w) satisfying

k
(@ 9 w) || o + D I|(1+|x])"Ve|,-

v=1
k+1

+ ZI||(1 + %) (v

C{|(b1, bz b3)[lyw | (1o €20 €3) [y + ([ (1 + [x) ][ 2

i (1 + |x|) V7R + ZH 1+ )V (£.5.7) LZ},
(17)

Yu, VYO, V'w)| .

where C > 0 is a constant depending only on u, A, k.

3. The Proof of Theorem 1

In this section, we prove the main Theorem 1 for the exis-
tence of stationary solution of (6) by using the contraction

. . . 54,5,5,5 .
mapping principle in X,7"". For this purpose, we study
the following iterated equations

dlvu+F;)(u V)e=h,

(u+A)Vdiv u+Vo=—p(u- Vyu + f, (18)
—KkA9= -, (-V)9+ 3,

—pu —

—Aw = (- V)i +F,

where (g, 7, 9, @) € X,
={,(P,0), etc., and

(19)

3.1. Construction of Solution Map F for (18). Now, we
devote ourselves to establishing a solution map for (18). To
begin with, we derive the weighted L? estimates on the solu-
tion of (18) by applying Theorem 2. In fact, let

Piby=c,=pPi,by=C e, =9, by =it,c; =w (20)

m
‘D?|~°z
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and h, f, g, 7 in Theorem 2 be denoted as in (19). By the
Sobolev inequality, we can choose ¢ >0 sufficiently small
such that p/2<p<2p and # in (15) satisfy n<#,. It is
straightforward to check that (15) holds for k =4, and

0 s+ 3 100+ )
, v=1 (21)
' ZO |l v (7.6.7)||, <€ + Ko,

with K, defined by

3
Z [(1+x])** V¥ (H, E, G, R)||, +| (1 + [x])*V*H]|,,<co.

(22)

Thus, one has the desired result by applying Theorem 2
with k=4 for (18).

Lemma 3. Let (H, F, G, R) satisfy (22). Then, there exists a
positive constants g, such that if € < e, the problem (18) with

@ @ 9 w) e X
B xH satisfying

has a solution (Q,u,9,w) e H x H x

4
(@1 9 w)|[ 1 + Y [I(1+|x])'V¥e|l 2

v=I

5
Z (2 +|x])"

VVu, V9, V'w) || . < C(€° + Ky),

(23)
where C > 0 is a constant depending only on p,0,d, A, u, «.

To continue, we cite a lemma in [22] which will be used
to establish the L® norm of the solution to (18).

Lemma 4 (see [22]). Let E(x) be a scalar function satisfying

o CDC
|0%E(x)| < FETE (Ja|=0,1,2). (24)

(i) If ¢(x) is a smooth scalar function in the form: ¢ =
div ¢, + ¢, and satisfies

Ly(@) = |2+ x)|[ oo + [| (1 + 121)°0; [ oo + l|@2]]1: < 00,
(25)
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then for any multi-index a with |a| =0, 1, one has

C

|03 (E % 9)(x)| < le‘ﬁLl (9)- (26)

(ii) If ¢(x) is a smooth scalar function in the form: ¢ =
@,9, and satisfies

Ly(p) = ||(1+ |x]) 2<PHLoo+H 1+[x])* (Vo) | o

(27)
+ H (1+ |x| 9, (Vo,) HHI < 00,
then for any multi-index a with |a| = 1, 2, one has
[24 CD(
BB« 9IS Lale) (28)

Here, the constant C,, depends only on a.

According to Lemma 3, we can introduce the solution
map for (18): F : XY LB B B X H by F(5, i,
9,0) = (0, u, w). In fact, in the following proposition, we

can see that F maps Xj’5’5’5 into itself. That is, F(0, i, 9, )

Proposition 5. There exists c, >0 such that for sufficiently
small € > 0, if (H, F, G, R) satisfies

K (L EGR |1 ) VH
||+ <) H < con

then (18) with (Q, i u 9 ) j ** has a solution (0, u, 9, w)
F( i, 9, w) € X
Proof. We prove this result by two steps. |

Step 1. We begin with the L*°-norm of the solution (g, u, 9,
w) to (18). From the Helmholtz decomposition and Fourier
transform, the solution of (18) can be written of the form
and compare [22]:

u=v+Vp,Q=y+ 2u+A)Ap,9=E; * ©,w=E; = ¢, (30)

5
where
3
v](x) = ZEij * fi(x),
i1
p=E;*¢(x),
y=Ey * (div f),
Ezi(ﬁ_ﬁ§%:“Lﬂ
Yo 8 \|x| |x)? 471x| (31)
f1=—/_)(u-V)ljll+j—l,
go:—pp(u V)e+h,

Now, we apply Lemma 4 to get the estimate for (g, u, 9,
w). As a start, we study more details of f in order to estimate

u and Q. Since (8,19, W)€ X:’S’S’S, there exists U, =
(U), <i; and U, such that

div # =div U +U2,and|| (1+1x]) U ||LM+H 1+\x| HL,

(32)
This in turn yields
fi=—pli- V)i~V - Ab + pF,
=div (—pu;it+ pi;U, + pFy ;) + (-p(U, - V)i, —,(U, - V) p
+ pir,U,~Vib - Av-Vp - Fy;+pFy;) =div fy,+f,;
(33)

In view of (32), the Sobolev inequality and the fact that

LT o oA555 . Lo
(0, 1,9, w) eX,”"", a direct computation gives that

1 Bl foill oo+ 1 2ill + 1O+ DS < G + K,

with K, defined by
Ky= ([ (1 ) B+ (1 02 F o+ [ sl (35)

By Lemma 4(i), we thus obtain

<C(£+K)). (36)

Next, we calculate the estimate for p. Notice that

ey

‘oz|"°’



Since (8, i1, 9, ) € 5(:’5’5’5, it follows from Lemma 3 that

|1+ [x)°q15 || oo + [| (1 + 121)* (Vi) 45| oo
+]| (1 + [x)°qy (V) |
< C(:s2 +K)s

[+ el oo+ (1L 1)V o

(38)
<C(e® +Kp).
Using Lemma 4(ii), we immediately find
|x||Vpl, |x[*|V?p| < C(e? + K). (39)

Hence, according to (30), (36), and (39), we can conclude
the estimate for u and @ as

x| [u], [x]*[Vul, [x]*|o] < C(e* + Ky + K, ). (40)

To continue, we treat the estimate for 9. To this end, we
first write ® in the form

@:%GK@vﬁ+@m.w@—wm)—Mw+wm%w+®f—§H—6)
1 S 2N = s 1/,- I
T div ((51‘9"'(29) (”— U1) -{3H, _Gl) + P ((U1'V) ((19‘*(2@)
- (89+3,2) U, - 0Vl - QitvE, - ¥ () - [ + Vi (@ + d)
+V8, - H, - H, - Gz) =div ©, +O,.
(41)
This together with (g, i, 9, @) € Xj’s’s’s and (32) that
[(1+ %26 || o + 1@l + [| (1 + [x])°O| o < C(e* + ;)
(42)
with K, defined by
K, = H(l + |X|)3(H’ G)”Lm + ||(1 + |x|)2(H1, Gl)HLm + | (Hyp Gyl
(43)
By Lemma 4(i), it holds that
|x[[9)], [x|*|V9| < C(e” + K,). (44)
As to the estimate for w, we note that ¢ can be rewritten as
¢p=—(a-Vyw+ |V (w+d) +R
=div (—uw + U, +R))
+[(-U, - V) +wU, + Vo (0 +d) + R,
=div ¢, + ¢,.

(45)
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By the Sobolev inequality and the fact that (g, ii, 9, @) €

54,5,5,5

X,”", we obtain

1+ 1?6 + 182l + ([ 1+ 6] 6]]oo < C(& +K),
(46)

with K; defined by
Ky o= [|(1+ %) R o + [[(1# [])*Ry | oo + 1R - (47)
With this help and Lemma 4(i), one has
Jx|[w], |x|*|Vw| < C(&* + K5). (48)

Next, for the case of |x| < 1, in terms of Lemma 3 and the
Sobolev inequality, we immediately deduce that

VY (@ 1 9, w) || oo < CHVV”(Q, u, 9, w)HHl < (82 +K0),v: 0, 1.
(49)

Consequently, combining (40), (44), (48), and (49), one has

(1 + x| o + ZO ([ (14 ()" VY (1, 9, w)]| oo < C(* + K).
(50)

Step 2. By Lemma 3 and (50), it follows that (18) admits a
solution (@, u, 9, w) satisfying

||(Q7 u, 9, w) ||X4’5‘5’5 < C(sz + K) < CS, (51)

where the constants C, C > 0 depend onlyon p, 6, d, u, A, k.
To complete our proof, we need to study more details on . To
this end, let us define U, and U, as

p p p -~ H
U, =-PPag, U, =0 div (’i_Pa) ~ P v 2. (52)
p P P p
Thus, from (18),, the solution u can be written as
div u=div U, + U,. (53)

In addition, by (g, #, 9 ) € 5(;1,5,5,5

and (50), we can get
(14 ) U || oo + [ (1 + [x) 7" U | (50
<C(e+ K+ |1+ ) "H] ) =Ce.

The proof of this proposition is completed.

3.2. Contraction of the Solution Map F. Now, we are in a
position to prove the solution map & for (18) is contractive.
Assume that (&, i, 9, @) € )?:’5’5’5 and (¢/, W, ¥, w) = F
(&, #,9, @) for j=1,2. By (18), a straightforward calcu-
lation yields that
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div (u' =) + f;_(u V) (' -} =h,
—pd(u' =) = (u+ A)Vdiv (u' —u?)+V (o' - Q%) =-p* ((u' - &*) - V)i - p* (& - V) (&' — ) +7, (55)
A9 - 9) == (3 - ) - V)9 - (@) (3" - 9") +g.
-Aw' -w?) =—((@" - &) -V)o' - (& - V) (@' -2?) +7,

where

f==(p"-p") (@ - V)i - (Vo' -V@?) - AW' -V?* - (AD' - AD?) +
g=-(0-8) @ w9 -
= <|szﬂ - \vwz}z) (@ +

P’+Z(Q]+P) ziz%(a@),

d) + |var[* (@' - %),

By the Sobolev inequality, it holds that

3
ICE+ DRl + (L + ]V 2

v=1

+ Z |+ |x|>““V”(f,g, M,

<C(e+Ky)

>
X3,4,4,4

(57)

with K, defined in (22). By applying Theorem 2 with k = 3 to
(55), we obtain

H(QI_QZ ul_uZ 91_92 wl_ 2)||L6

+ ZII(HIx\ )V (' =)l

v=1

+ Zl ([ (1 ) (VY (! = ?), V¥ (9

<Cle+ KO)H (@1 R -9 -9, 0 - ﬁﬂ)

~F) V(- w))

o

(58)

~1 ~2 ~1 ~2
h:{@fal - vg - ('i? (@ -v)d' - @;’(az-v)?) + (il - ~12>H,
PP p p plop
(p'-P*)F.

(6-0) @ -9)@ -G V) - (@ V)@) + ¥ (i) - ¥ (@) +

‘Aﬁ;l +|va' [ (@ +Ez)‘2 - |aw? + jva? [ (@ +Zl)‘2 + (Z; 9L

(56)

With the same computations as used in (50), one can
arrive at

I+ ) (@ = @)+ 20+ )™ (77 (s = 0), V(" =), 97 ! = w))

< c<s+1<(,>H (@1 _R A -t - e - wz)

+ Cs(”(l + \x\f(f]i - Uf) HL +

XA

sy (- 02)

L‘)’

(59)
where U{, f]JZ(] =1,2) are functions satisfying

div @ = div U} + U), H(1+|x| U’H H1+|x| UfH <e.

(60)
In addition, we denote U{ and UJZ(] =1,2) as

)-fié(af.v)ﬁhﬁ.
p P
(61)

vl :—%i{jd, Ul = ¢/ div <é



We can derived from (&/, i, g ,W) € 5(:’5’55 that

11+ el (U3 = U)o + |3+ 15D (U2 = U3)
<C(e+ e ], )| (@ -0 -w 8 -8 0 -w?)

>
Xt

(62)
which combined with (58) and (59) yields

e~ i~ P! )|
[0+ (U= U)o+ [0+ 17 (U3 - U3)
<Cer k)| (- a8 -8 0! -a?)

+C5<H(1 + |x|)3(fJ} - Uf)

X3Add

+ H(1 + |x|)*1((7§— Oﬁ)

o)

(63)

Lo

With the above preparation in hand, we then have the
following proposition.

Proposition 6. Assume that (H, F, G, R) satisfies the estimate
(for K defined in Proposition 5):

K < cpe, (64)

for some c,>0 and sufficiently small &> 0. Then, for (&,
i, 9, 0) e X2 and (0,9, w) = F(&, i, Y, )
(j=1,2), one has
” (QI _ Qz, W =29 - w — wz) Hx“v‘*v‘*
[+ ) (U1 = UD) | + 10+ D7 (V2= U
1 ~1_~2 ~1 29l @ -1 -2
£§<H<Q oL u —u,9 -9,w w)

#||@ ey (03-07)

X3,4,4,4

+||@ e ey (0;-07)

Ll)’

(65)

‘Lm

where (011" Ué)(j:I,Z) satisfies (60), and (U, U%)(j=
1,2) are defined by (61).

Therefore, by Proposition 5, Proposition 6, and the
contraction mapping principle, we immediately get the exis-
tence and uniqueness of solution to system (6). The proof of
Theorem 1 is now completed.
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