Transcriptional Analysis of Nuclear-Encoded Mitochondrial Genes in Eight Neurodegenerative Disorders: The Analysis of Seven Diseases in Reference to Friedreich’s Ataxia

Elsadany, Muhammad and Elghaish, Reem A. and Khalil, Aya S. and Ahmed, Alaa S. and Mansour, Rana H. and Badr, Eman and Elserafy, Menattallah (2021) Transcriptional Analysis of Nuclear-Encoded Mitochondrial Genes in Eight Neurodegenerative Disorders: The Analysis of Seven Diseases in Reference to Friedreich’s Ataxia. Frontiers in Genetics, 12. ISSN 1664-8021

[thumbnail of pubmed-zip/versions/1/package-entries/fgene-12-749792/fgene-12-749792.pdf] Text
pubmed-zip/versions/1/package-entries/fgene-12-749792/fgene-12-749792.pdf - Published Version

Download (3MB)

Abstract

Neurodegenerative diseases (NDDs) are challenging to understand, diagnose, and treat. Revealing the genomic and transcriptomic changes in NDDs contributes greatly to the understanding of the diseases, their causes, and development. Moreover, it enables more precise genetic diagnosis and novel drug target identification that could potentially treat the diseases or at least ease the symptoms. In this study, we analyzed the transcriptional changes of nuclear-encoded mitochondrial (NEM) genes in eight NDDs to specifically address the association of these genes with the diseases. Previous studies show strong links between defects in NEM genes and neurodegeneration, yet connecting specific genes with NDDs is not well studied. Friedreich’s ataxia (FRDA) is an NDD that cannot be treated effectively; therefore, we focused first on FRDA and compared the outcome with seven other NDDs, including Alzheimer’s disease, amyotrophic lateral sclerosis, Creutzfeldt–Jakob disease, frontotemporal dementia, Huntington’s disease, multiple sclerosis, and Parkinson’s disease. First, weighted correlation network analysis was performed on an FRDA RNA-Seq data set, focusing only on NEM genes. We then carried out differential gene expression analysis and pathway enrichment analysis to pinpoint differentially expressed genes that are potentially associated with one or more of the analyzed NDDs. Our findings propose a strong link between NEM genes and NDDs and suggest that our identified candidate genes can be potentially used as diagnostic markers and therapeutic targets.

Item Type: Article
Subjects: STM Open Library > Medical Science
Depositing User: Unnamed user with email support@stmopenlibrary.com
Date Deposited: 12 Jan 2023 09:11
Last Modified: 06 May 2024 07:00
URI: http://ebooks.netkumar1.in/id/eprint/75

Actions (login required)

View Item
View Item