Robustness Test of Selected Estimators of Linear Regression with Autocorrelated Error Term: A Monte-Carlo Simulation Study

Ibrahim Rauf, Rauf and Juliana Ifeyinwa, Okoli and Umar Yahaya, Haruna (2021) Robustness Test of Selected Estimators of Linear Regression with Autocorrelated Error Term: A Monte-Carlo Simulation Study. Asian Journal of Probability and Statistics, 15 (2). pp. 1-17. ISSN 2582-0230

[thumbnail of 289-Article Text-466-1-10-20220929.pdf] Text
289-Article Text-466-1-10-20220929.pdf - Published Version

Download (875kB)

Abstract

Assumptions in the classical linear regression model include that of lack of autocorrelation of the error terms and the zero covariance between the explanatory variable and the error terms. This study is channeled towards the estimation of the parameters of the linear models for both time series and cross-sectional data when the above two assumptions are violated. The study used the Monte-Carlo simulation method to investigate the performance of six estimators: ordinary least square (OLS), Prais-Winsten (PW), Cochrane-Orcutt (CC), Maximum Likelihood (MLE), Restricted Maximum- Likelihood (RMLE) and the Weighted Least Square (WLS) in estimating the parameters of a single linear model in which the explanatory variable is also correlated with the autoregressive error terms. Using the models’ finite properties(mean square error) to measure the estimators’ performance, the results shows that OLS should be preferred when autocorrelation level is relatively mild (ρ = 0.3) and the PW, CC, RMLE, and MLE estimator will perform better with the presence of any level of AR (1) disturbance between 0.4 to 0.8 level, while WLS shows better performance at 0.9 level of autocorrelation and above. The study thus recommended the application of the various estimators considered to real-life data to affirm the results of this simulation study.

Item Type: Article
Subjects: STM Open Library > Mathematical Science
Depositing User: Unnamed user with email support@stmopenlibrary.com
Date Deposited: 10 Feb 2023 08:23
Last Modified: 29 Jun 2024 11:16
URI: http://ebooks.netkumar1.in/id/eprint/247

Actions (login required)

View Item
View Item